
TRIMreport

Reportwriter

May 30, 2017

Trifox Inc.

www.trifox.com

Trademarks
TRIMapp, TRImpl, TRIMqmr, TRIMreport, TRIMtools, GENESISsql, DesignVision,
DVapp, DVreport, VORTEX, VORTEXcli, VORTEXc, VORTEXcobol, VORTEXperl,
VORTEXjdbc, VORTEX++, VORTEXJava Edition, LIST Manager, VORTEXodbc,
VORTEXnet, VORTEXclient/server, VORTEXaccelerator, VORTEXreplicator are all
trademarks of Trifox, Inc.

All other brand and product names are trademarks or registered trademarks of their
respective owners.

Copyright
The information contained in this document is subject to change without notice and does
not represent a commitment by Trifox Inc. The software described in this document is
furnished under a license agreement and may be used or copied only in accordance with
the terms of the agreement. No part of this manual or software may be reproduced or
transmitted in any form or by any means, electronic or mechanical (including
photocopying and recording), or transferred to information storage and retrieval systems
without the written permission of Trifox Inc.

Copyright © Trifox Inc. 1986-2017

All rights reserved.

Printed in the U.S.A.

TRIMreport Users Guide

Contents

Preface 1
Background 1

Support 2

1 Introduction
Defaults 4
Screen Layout 4
Actions and Function Keys 4
Screens 5

2 Designer Elements
Page Formatting 6
Report Blocks 7

Block organization 7
Pagetext 8

Turning the Page 8
Block Detail 9

SELECT Control 9
WHERE Control 10
Trigger Control 11

Showing Other Information 11
Variables 11
Functions 11

Triggers 12
MAIN Trigger 13
User Triggers 13

Break Sub-Block 14
Break Sub-Block Header & Footer 15
Break Control Triggers 15
Special Break Techniques 15

3 Design Considerations
Effective Designs 17

Report Design Methods 17
Distributing Work 17

SELECT-driven Method 18
Default Behavior 18
Examples 20
List-Driven Method 23
Examples 24
Trigger-Driven Method 27
Examples 28

4 Designing a Report
Step by Step 32
Printing Your Report 43
TRIMreport Users Guide i

Contents
Controlling the Printer 43
Saving Escape Codes 43

Advanced Procedures 44
Calling Other Reports or Applications 44
Making a Report Database-Independent 44
Specifying a Single Pagetext Header/Footer 45
Fields to Center Headings 46
Transforming Values 46
Multiple Columns from One Field 46

Second Tutorial: Two-Block Report 47

5 Running Your Report
Running/Printing Reports 50

Output Buffer 51
Output Files 52

Parameters 52

6 TRIMreport Screens
BLOCK COMMENTS 55
CHOOSE REPORT 56
CHOOSE REPORTBLOCK 58
CHOOSE TRIGGER 60

Predefined Triggers 60
DEFINE BREAK 62
DEFINE FIELD 63
DEFINE PAGETEXT 64
DEFINE REPORTBLOCK 65
DEFINE SELECT 66
DEFINE TRIGGER 68
DEFINE WHERE 69
Screen Painter 70

Main Screen 70
Edit Screen 71

SQL COMMAND 73
SYSTEM COMMAND 74

Appendix A Format Masks 75
char 75
numeric 75
datetime 76
User-defined 77

Index 79
TRIMreport Users Guide ii

TRIMreport Users Guide

Preface

Background
Trifox Inc. has been serving the relational database market since 1984 through consulting
and the development of software products. In 1987, Trifox created SQL*QMX for Oracle.
This easy-to-use, powerful querying and report writing tool, which is based on IBM’s
QMF, continues to be used at thousands of sites. In 1989, Trifox created TRIMtools, a
family of application and reportwriting tools now known as DesignVision. DesignVision
was developed in response to the OLTP requirements of several large application
vendors.

Database Access
VORTEX is an integrated family of products that allows nearly any production
application to access SQL data:

• On any or all of the major relational databases.

• Across networks.

• Across platforms.

• With a dramatic increase in the number of concurrent users.

• Without any additional hardware.

In a client/server or multi-tier configuration, VORTEX makes it possible for your SQL
applications to access data on different platforms over one or more network
configurations. Currently it supports only TCP/IP.

Inherent in this approach are services that allow production applications originally
written for one relational database (such as Oracle) can access the same data on another
database (such as Informix), even if it is spread across different databases.

VORTEX Precompilers for C and COBOL, as well as a variety of program interfaces,
allow existing SQL programs to take full advantage of VORTEX services such as
performance enhancement, transaction monitoring, and flat-file database access.

With VORTEXaccelerator in your configuration, you dramatically increase the number of
concurrent users who can log on to a specific SQL production application. Your users
experience faster performance and you won’t have to change any programs or add any
hardware.

Application and Report Development
DesignVision DVapp lets you design, generate, and maintain forms-based applications.
You can easily port the pop-up windows, customizable menus and submenus, and
custom keyboard assignments, in fact the entire application, to Windows .NET, Unix,
OpenVMS, or HTML5 with no extra effort.
TRIMreport Users Guide 1

The reportwriter, TRIMreport, lets you create simple reports quickly, or complex reports
with absolute confidence in their power.

When you want to write stand-alone applications (including triggers) without a user
interface, the TRIMpl 4GL language gives you the freedom you want. The procedural
language has over 100 database-specific functions that help you write powerful
applications in very little time.

Reaching Legacy Data
GENESISsql is a SQL processor that accesses low-level data sources such as ISAM,
SDMS, ADABAS, RMS, and MicroFocus and makes the data accessible to VORTEX
clients. You can add GENESIS data sources to a VORTEX system in a matter of days,
simplifying what used to be an enormous task.

Conventions
Screen shots in this manual come from the Windows version of our software.

Trifox documentation uses the following conventions for communicating information:

Example Describes

CHOOSE REPORT > [F3] > Press [F3] on the CHOOSE REPORT menu and ...

Right-click Clicking the right mouse button.

Left-click Clicking the left mouse button.

connect_string Replace italicized text with your own variable.

vtxnetd Text in bold typewriter style represents strings
that you type exactly as they appear in the
manual.

Support
If you have a question about a TRIFOX product that is not answered in the
documentation (paper or online), contact the Customer Support Services group at:

• support@trifox.com

• Trifox Customer Support Services
2959 Winchester Boulevard
Campbell, CA 95008
U.S.A.

• 408-796-1590
TRIMreport Users Guide 2

TRIMreport Users Guide

Chapter 1

Introduction

TRIMreport is a 4GL that allows you to create basic to complex reports from data stored
in your database.

TRIMreport is completely interactive and includes a screen painter that lets you design
the report on screen. You can arrange and edit all the report elements — columns,
headings, headers/footers, summary information, and page breaks. You can execute the
report design from TRIMreport at any time to validate the design as it develops.

TThe report design is filed and other users can run the report with the runtime version of
TRIMreport.

Because TRIMreport shares a library of functions with its companion DVapplication, the
two can work seamlessly to create applications and reports that meet your needs. The
library makes it possible for you, a designer, to create applications and generate reports
without writing any code. At the same time, professional developers can create
additional functions, store them in the library, and you can use them to maintain style
and functionality consistent with your organization’s unique business needs.

TRIMreport lets you write reports as simple or as complex as you like. In its most basic
use, you can create a report with the provided defaults. The more advanced levels allow
you to build your own definitions of pages, assign actions in a report, and store them in
the default library, or data dictionary, for future use.

TRIMreport consists of three main parts, all of which operate independent from the
database:

• Designer — creates ascii files that are easily ported across platforms.

• Generator — creates binary files for specific operating environments.

• Runtime — executes the report.

This independence lets you control the processes that generate reports, such as how often
a report is required to interact with a database — especially important in environments
with many users.

The reports typically retrieve data from the database once, and store it locally in lists. To
minimize database interaction, TRIMreport uses list management to process additions,
validations, modifications, and updates locally.

A TRIMreport report consists of report blocks, which contain SELECT statements, text/
header/footer areas, fields, and triggers necessary to generate the report.

The report blocks are organized in a left-right/top-bottom structure. Left-right
neighboring report blocks are siblings; top-bottom neighboring report blocks are parent-
child. Sibling report blocks all have the same single parent. While the report is being
designed, only the report blocks with direct parent-child relationships are displayed.

The screen painter never displays siblings on the same screen.
TRIMreport Users Guide 3

Chapter 1 Introduction Defaults
Defaults
TRIMreport comes with a default library that helps maintain consistency in your
organization. The functions and defaults are completely under your control — you can
use them as-is, or you can replace or modify them, or you can create new ones.

 TRIMreport draws from an extensive set of default settings and functions that allow you
to write reports without writing any code. Functions for each step of the formatting are
added in the design module; the defaults appear on the screen as you design the report
by selecting from prompted actions. Once the initial design is created from the defaults,
you can use the screen painter to cut and paste elements to meet specific design
requirements.

In addition, TRIMreport lets you create defaults that can be used from report to report for
uniformity of design. For example, you may want the same header style for the first page
of all reports, or you may want certain confidential information, when included in a
report, to automatically add a page label indicating the security level.

The salary field can be coded for certain employees as confidential depending on the user
identification used — the word confidential is printed in the report when the employee’s
data condition is met. When the salary field is created in the database, code for the field is
stored in the TRIMreport data dictionary.

Screen Layout
TRIMreport consists of several character-based windows (screens) that let you perform
certain functions. Most windows have actions that perform operations specific to the
dialog; the function keys, listed at the bottom of the screen, perform operations that are
general in nature.

Windows that appear on the screen, such as the CHOOSE REPORT dialog above, handle
your input and initiate an action. The keys for available functions appear at the bottom of
the screen. The status line displays messages associated with any attempted procedure;
for example, the screen above displays the OK CONNECT performed message that
appears after you have successfully connected to the database.

The bottom line of the status line displays the current block name and type that is being
modified, such as BLOCK (Detail). In the screen painter, the status line includes the
current row and column of the cursor.

Actions and Function Keys
To execute an action, put the cursor in the action name and press [Enter]. You can move
the cursor using the arrow or [Tab].

Pressing [Tab] once moves the cursor to the next valid field; pressing SHIFT+[Tab] moves
the cursor to the previous valid field.

Function keys are listed immediately below the screen work area. All screens have at
least one active function key, [F3]. To execute the function key command, simply press
the function key that corresponds to the command.

In addition to the eight function keys listed on the screen, two other functions are
available: [F9] and [F10].

These keys, as well as [PgUp] and [PgDn], let you move across screens that permit
scrolling.
TRIMreport Users Guide 4

Chapter 1 Introduction Screens
NOTE: The actual keyboard mappings for function keys are defined in the termtype.key file for
your terminal by the GETKEY utility. This section documents the defaults as shipped.

From any text editing window, such as a trigger window, or from the screen painter,
press HOME to exit to the first TRIMreport window, CHOOSE REPORT.

Screens
A TRIMreport report consists of report blocks. Report blocks contain SELECT statements,
text/header/footer areas, fields, and triggers necessary to generate the report.

The report blocks are organized in a left-right/top-bottom structure. Left-right
neighboring report blocks are siblings; top-bottom neighboring report blocks are parent-
child. Sibling report blocks all have the same single parent. While the report is being
designed, only the report blocks with direct parent-child relationships are displayed. The
screen painter never displays siblings on the same screen.

A B C

D E F

G

H I J

parent-child
relationship

siblings

For example (see the diagram above), when report block H is being designed, the screen
painter displays A and H. When report block F is being designed, the screen painter
displays C and F. Finally, when report block G is being designed, the screen painter
displays C, E, and G.

At report runtime, the report block execution sequence is from top to bottom, and left to
right. In the above example, the order is A-H-I-J-B-C-D-E-G-F. You can modify the
sequence by editing the report block triggers, such as the CHILD and POST-BLOCK
triggers in the TRIMreport library, and using the block() function.
TRIMreport Users Guide 5

TRIMreport Users Guide

Chapter 2

Designer Elements

You can have TRIMreport create default designs for you to work with. To create your
custom design, you modify elements in the design, and where necessary, add new ones.
This chapter describes the elements you’ll be modifying and gives guidance on how
changes affect your report. You can enhance and edit the report design on screen.

A simple graphic summary of report elements looks like this:

PAGE

DETAIL

Page Header

Page Footer

Break Header

Break Footer

DETAIL LINES

BLOCK
Block Header

Block Footer

Break Header

Break Footer

DETAIL

BREAK SUB-BLOCK

Headers and footers for pages, blocks, and breaks are all optional. Break subblocks
themselves are optional and blocks may have multiple break subblocks, which would
change this illustration. In addition, blocks can have siblings and children, and children
can be parents of other children. Each sibling and child can have its own headers and
footers as well as detail and break definitions.

Page Formatting
Blocks (and their components) fit inside pages. The output buffer, which becomes the
printed report, is defined by the PAGE LENGTH (number of lines) and PAGE WIDTH
(number of characters on a line) fields on the CHOOSE REPORT window. Although the
maximum values allowed are 999 lines and 999 characters, it only makes sense to format
pages that fit on your paper.
TRIMreport Users Guide 6

Chapter 2 Designer Elements Report Blocks
When the paginate trigger is invoked and/or your report calls a paginate(break), the
command writes the output buffer to a file and issues a form feed. It then clears and
resets the output buffer.

NOTE: You can suppress or change form feed by passing an option, -f, to the report when
running it. For details, see “Running/Printing Reports” on page 50.

Report Blocks
A report block is the basic unit for printing or displaying data in the report. Called from
the report design, a block has three visual “parts” and up to three control sections.
Control sections, made of SQL and TRIMpl code, determine the block’s actions and
activities.

The visual parts, header, footer, and detail area, are what you see when the report prints
out. Block headers and footers, which print once each time a report block is called,
contain text, printed exactly as you enter it, and fields, which are filled in at runtime.

Block organization
Your report processes blocks from left to right and top to bottom. Report blocks that are
next to each other are called siblings. Siblings all have the same single parent and do not
appear together on the screen painter. Report blocks that are above each other are
considered to have a parent-child relationship. You can only request a child block if its
parent has a SELECT statement. Also, you cannot create a child block that causes the
combined size of the parent and child to exceed the defined page length.

If you were viewing blocks from the following diagram, when you are working on report
block H, you could see A and H. When you work on report block F, you can view C and
F. When you work on report block G, you can see C, E, and G.

A B C

D E F

G

H I J

parent-child
relationship

siblings

When you execute a report, the execution sequence is from top to bottom and left to
right. In the illustration, the order is A-H-I-J-B-C-D-E-G-F. To modify the sequence, edit
report block triggers like CHILD and POST-BLOCK to include the TRIMpl block()
function. (For details see “Triggers” on page 12.)

When you create a block as a child, it inherits pagetext from its parents. As a visual aid,
the designer displays a child block positioned within its parent block.
TRIMreport Users Guide 7

Chapter 2 Designer Elements Pagetext
Pagetext
Even though the page is a larger element, its appearance is determined by settings in the
block. Each block has associated specifications for page-level headers and footers that it
inherited from its parent block, or that you have modified (CHOOSE REPORTBLOCK >
Choose a block > PAGETEXT). This pagetext includes three items for building a page
around the report blocks:

• Pagetext header

• Pagetext footer

• PAGINATE trigger

Turning the Page
The PAGINATE trigger controls pagetext activity, including creating new pages. It
contains code, usually a paginate() call, which can have up to three parameters:

• header — tells the function to insert pagetext header text and fields at the top of a
report page.

• footer — places the pagetext footer text and fields at the end of the report page.

• break — tells the function to end the current page.

If you create a report block with a two-line pagetext header and a PAGINATE trigger
that contains

paginate (header);

when you run the report, the two-line pagetext header appears at the very top of the
page.

Once the header is placed, the variable G.LINENUMBER increments by the number of
lines in the pagetext header.

As detail lines are written to the output buffer, the runtime executable (TRIMrun) keeps
track of G.LINENUMBER progress. When the variable reaches the most number of lines
that can fit on a page given the specified page length and the number of lines specified in
the footer

(G.LINENUMBER = PAGE LENGTH - NUMBER OF LINES IN PAGTEXT (FOOTER))

TRIMrun calls the PAGINATE trigger again. Typically, the trigger writes the pagetext
footer, creates a page break (forces the current buffer to write to the report file or device
opened by the last open() call, and writes a pagetext header to the next page).

The default PAGINATE trigger, unless modified, performs those three actions in that
order when it’s called. If you change the trigger, be sure that you force a break before the
end of a page. Otherwise, your report returns an error.

NOTE: G.LINENUMBER and G. PAGEOFFSET only affect detail area text. You cannot use
them to move a field in the pagetext text areas.
TRIMreport Users Guide 8

Chapter 2 Designer Elements Block Detail
Block Detail
The block detail is where the real content of your report is defined. Control sections in
the block detail — SELECT, WHERE, and trigger — determine how the detail is
completed:

• A SELECT control retrieves data from a database.

• A WHERE control (not to be confused with the WHERE clause in a SQL
statement) filters that data, evaluating to either false (0) or true (non-zero).

• Trigger controls (or simply triggers) control the flow of the block’s actions.

Block detail areas are completed when a SELECT control retrieves data from the database
and the WHERE filter passes it on. Generally, the block detail area prints once for each
row returned by the SELECT statement.

SELECT Control
The SELECT control can contain either:

• A SQL SELECT statement for example:

SELECT * FROM table

• A list reference. For example:

[G.DATA_LIST, ovtvar1, ovtvar2]

When the SELECT references a list, every row from the current position to the
end of the list is copied to the output buffer. Any WHERE control you’ve put in
the block detail is simply ignored.

Using SELECT
The SELECT control contains the SELECT statement that retrieves data from the
database. Each retrieved row that satisfies the WHERE control places a detail area in the
report. The statement must be a valid SELECT — an UPDATE, INSERT, DELETE, or
other non-SELECT statement causes an error.

Generally, the SELECT has a WHERE clause. For example:

SELECT name, dept
FROM staff a
WHERE a.dept = &G.DEPARTMENT

The example returns rows from two columns (name and dept) when the dept value
matches the value of G.DEPARTMENT in the main trigger. Notice that the SQL statements
are not terminated with semicolons (;).

When you specify a SELECT statement, you must also choose one of the actions on that
window — CREATE, DEF_HORZ, DEF_VERT, or DEF_VER2 — for the SELECT to be
accepted. When one these actions executes, it creates field structures that correspond to
the columns referenced by the SELECT statemenT. The CREATE action builds field
structures. DEF_HORZ, DEF_VERT, or DEF_VER2 actions build default fields in addition to
the field structures.
TRIMreport Users Guide 9

Chapter 2 Designer Elements Block Detail
If the example builds two field structures, names and dept, you can reference the value of
name or dept for the current row returned from the database as name and dept (or
block.name and block.dept, where block is the name of the block).

If the database table changes or the columns themselves change, to avoid errors you must
issue a CREATE to recreate the report’s field structures. The following error:

Error: GEN vs RUN internal mismatch

means that you must recreate the field structures before running the report against the
changed table. You can run a report against a different database than the one it was
designed with, but again, you must recreate the report’s field structures.

For the most flexible reports, avoid using debase-specific SQL.

Do not terminate SQL statements with a semicolon (;).

WHERE Control
Using a WHERE control lets you simplify WHERE clause constraints in a SELECT
control, where they might cause problems. It executes after a record is returned from the
database. WHERE controls are only useful when you use them with SELECT controls.

WHERE controls move processing from the database to the client. This adjustment saves
database resources and helps you ensure that your SQL is ANSI-standard and thus,
portable.

For example, you can select all names from the staff table in which the third letter is an
“I” — Smith, Thistle, Flint with a SELECT and WHERE clause.

The report block can achieve the same results, and at the same time maintain database
portability and move the overhead of record-validation to the calling report process:

SELECT name
FROM staff

And using a WHERE control:

(substr(block.name, 3, 1) == “I”)

Each row returned by the SELECT statement loads the current value of the name column
into the field structure variable block.name. Even though block.name contains the current
value, the returned row is not processed until the WHERE control passes it.

You have a few basic rules to follow when you use WHERE controls:

• The expression must evaluate to a number or be capable of being converted to a
number.

• Variables (for example, var =var; or even i++) are not legal in the WHERE clause.
You must call a function to perform the assignment internally.

• You may not assign variables. You can call a function to perform an assignment
internally.

• Semicolons (;) are illegal.
TRIMreport Users Guide 10

Chapter 2 Designer Elements Showing Other Information
Trigger Control
Triggers are essentially instructions that control the flow of blocks and their elements.
While text areas indicate what to write, triggers provide the instructions on how to get the
information to write, how to process it, and what to do next.

Showing Other Information
The block detail areas of your report contain primary information. However, you can put
supporting, or ancillary data in text areas of headers and footers (pagetext, block, or
break). You can have a variable or function that is evaluated and place the returned value
in the text. You can put any ascii character in the text areas except the ampersand (&),
which signals that the item following it is a variable or function name.

Variables
The ampersand identifies an embedded variable in text. For example, using the G.TIME
built-in variable in the following pagetext header design looks like this:

==== Example report generated &g.time ====

It results in the report pagetext header:

==== Example report generated 15-MAY-98 ====

Functions
To display time instead of (or in addition to) the date, embed the TRIMpl function
to_char() with the G.TIME variable and include a mask (masks are listed in “Format
Masks” on page 75):

== Example report generated &/to_char(g.time, “HH:MI.SS”)/ ==

The pagetext header would look like this:

== Example report generated 11:14.32 ==

You can embed any number of functions or variables in a text area. When you embed a
function, you need to delimit it with a forward slash (/). Also, note that the embedded
function requires no semicolon (;).

If an embedded variable name references a variable that doesn’t exist, the validation
returns an error indicating that the variable can’t be found. If an embedded variable or
function returns a string that extends beyond the page width, the string wraps to the
beginning of the next line and overwrites any text there.
TRIMreport Users Guide 11

Chapter 2 Designer Elements Triggers
Fields
A field in TRIMreport is basically a point at which to place data in text areas of pages,
block headers, footers, details, and break sub-blocks. When fields “execute” (in order of
their sequence numbers, 1 through n), each field’s trigger also executes. In each field, the
trigger code is similar to

{
field = block_name.column_name;
}

When the field trigger code executes, the value of block_name.column_name is applied to
one of the following formats:

• Field data mask (999999 or A5 or MM-DD, YYYY)

• Justification (left, right, or center)

Then, the value is written to the output buffer.

In the example, field can be thought of as the current X-Y position. Writing to field, for
example, causes data to be written to the output buffer:

field=123;

You can modify the field data’s location on a page, including centering, suppressing, or
otherwise altering the field. For examples of these customizations, see “Fields to Center
Headings” on page 46.

The elements of the field are the mask and the trigger. The following table shows the
result of values that are too large to fit into a field as defined by its data mask:

Type Mask Value Displayed Result

CHARACTER A5 “PACIFIC” PACIF

NUMERIC 999 12345 ***

Triggers
Triggers are logical elements, blocks of code, that contain the instructions for each action
in a report. Typically you use them to change a report design’s execution flow, send
information and report data to a printer or other output device, or create, use, and
manipulate variables.

Triggers can be local to a report, to a block, or you can define functions external to the
design and call them from code inside the design. The MAIN trigger and user triggers
are global to the design and block triggers are local to their owning blocks.

TRIMreport has seven types of block triggers:

• PRE-BLOCK

• POST-BLOCK

• POST-HEADER

• PRE-FOOTER

• PRE-FETCH
TRIMreport Users Guide 12

Chapter 2 Designer Elements Triggers
• POST-FETCH

• CHILD

As you’ve already read, report block execution begins at the block header, repeats the
block detail for each row retrieved by the SELECT and WHERE controls, and executes
the block footer. Trigger controls give you access to blocks of code outside the current
report block to execute other processes before, between, and after the report block.

You can use triggers more than once in the same report and reuse triggers from other
reports.

To create or edit triggers, execute the trigger action for a report object and open the
DEFINE TRIGGER window:

• Main trigger (CHOOSE REPORT)

• Report block (DEFINE REPORTBLOCK)

• Page text (DEFINE PAGETEXT)

• Break (DEFINE BREAK)

• Field (DEFINE FIELD)

MAIN Trigger
The MAIN trigger, (CHOOSE REPORT > TRIGGER), primarily serves to call another report
block or another block of code. A report can have only one MAIN trigger, which is the
first piece of code that is executed when you run a TRIMreport design.

User Triggers
User triggers are global functions. You access them in the CHOOSE REPORTBLOCK
window, although they are not associated with a particular report block.

You can pass arguments to a function and refer to them internally (to the function)
simply as parm[0], parm[1], parm[2], and so on.

The function can also return a value. For example, a function can determine the number
of parameters passed to it via count():

{
if (count(parm) == 2) printf(“two parameters passed”);
printf(“parameter 1 = “^^parm[0]);
printf(“parameter 2 = “^^parm[1]);
return(“this is a test”);
}

NOTE: If a function references two parameters, you must pass two parameters or you get an
error. If a function returns a value, the function call must be part of an expression or an
error is generated.
TRIMreport Users Guide 13

Chapter 2 Designer Elements Break Sub-Block
Block Execution Summary
When the report calls a block, the block and triggers execute in the following order.

1. Execute PRE-BLOCK trigger.

2. Write header text.

3. Execute header fields.

4. Execute POST-HEADER trigger.

5. If SELECT statement returns a row:

a. Evaluate WHERE control, if defined. If true,

i. Execute PRE-FETCH trigger.

ii. Execute POST-FETCH trigger. If there is a break and the last break field is
not the same as the current,

A. For first break group:

- Execute PRE-FOOTER.

- Write break header text.

- Execute break header fields.

- Execute POST-HEADER trigger.

For all other break groups:

- Execute PRE-FOOTER trigger.

- Write break footer text.

- Execute break footer fields.

- Execute break POST-BLOCK trigger.

- Execute break PRE-BLOCK trigger.

iii. Write detail text/execute detail fields.

iv. Execute CHILD trigger.

a. Return to SELECT.

5. Execute PRE-FOOTER trigger.

a. Write footer text.

a. Execute footer fields.

2. Execute POST-BLOCK trigger.

NOTE: All triggers are optional. WHERE control is always true for a list-driven SELECT
control.

Break Sub-Block
Break sub-blocks add subheadings and group data in a block’s detail area. A single block
can have any number of break levels and you can define breaks on a value change in any
number of fields. Simply specify the variable names in the DEFINE BREAK window.
TRIMreport Users Guide 14

Chapter 2 Designer Elements Break Sub-Block
Break Sub-Block Header & Footer
A break header appears before the first row of data and for each additional break. The
break footer appears after the last record in a break group. You can edit either header or
footer by DEFINE BREAK > MODIFY.

Break Control Triggers
Like the regular blocks, sub blocks also have trigger controls. The execution, which
occurs from break level 1 to n, does not include its own detail area. A break sub-block
only has four types of triggers:

• PRE-BLOCK trigger — Executes for each break that occurs, before any other
action in the break sub-block (essentially the detail area). Once the break PRE-
BLOCK trigger has completed, the break sub-block header is written to the
output buffer.

• POST-HEADER trigger — If you have defined one, this trigger executes after the
break header is written but before the current block’s detail area executes.

• PRE-FOOTER trigger — If you have defined one, a PRE-FOOTER trigger
executes after a block’s detail area is written for the last row in a group but before
the break sub-block footer.

• POST-BLOCK trigger — If you have defined one, this triggers is the final event
for a break group. It executes after the break sub-block’s footer is written.

When you use breaks, you should order data on the break column in list-driven SQL
statements and note that the SUMDFLT action in DEFINE BREAKS creates SUM fields in
the break footer for each numeric field in the detail area.

Special Break Techniques
Basically, a break separates data when the value of a column changes. Sometimes,
however, you may need complex breaks.

Using the following table, for example, you can group the data by creating a break each
time the value of the first digit of the dept# column changes:

DEPT# EMPLOYEE SALARY
10 Bill Jones 10,000
11 Mike Hanlon 13,000
12 Kelly Johnson 11,000
22 Joe Morgan 12,500
22 Aldo Bugnon 13,400
23 Bjorn Washington 10,000
34 Isiah Trooper 17,000
34 Gordon Scout 15,000

The data breaks into three groups and the salaries for each group are totalled:

DEPT# EMPLOYEE SALARY
10 Bill Jones 10,000
11 Mike Hanlon 13,000
12 Kelly Johnson 11,000
TRIMreport Users Guide 15

Chapter 2 Designer Elements Break Sub-Block

34,000

22 Joe Morgan 12,500
22 Aldo Bugnon 13,400
23 Bjorn Washington 10,000

35,900

34 Isiah Trooper 17,000
34 Gordon Scout 15,000

32,000

If you create a break on dept, a group forms each time the dept field structure changes
value. By adding a substr() function, you direct the SELECT to create breaks that
group the data when only the first digit changes:

SELECT substr(to_char(dept),1,1),dept,name,salary
FROM staff
ORDER BY dept

However, this is not database-independent SQL; it depends on the database performing
necessary hashing functions to_char() and substr(). For instructions on making a
report database-independent, see “Making a Report Database-Independent” on page 44.
TRIMreport Users Guide 16

TRIMreport Users Guide

Chapter 3

Design Considerations

Effective Designs
Designing your report involves making tradeoffs. One important consideration you face
is balancing complexity with efficiency and maintainability. A complex design may yield
the most informative report, but it may also be more difficult to maintain and take longer
to run.

At the same time, a simple report might also be inefficient and slow. For example, if a
report design requires database information to be printed out three times in a report and
sorted on a different column each time, you can design your report to retrieve data from
the database three times, ordered on a different column each time, or you can retrieve the
data once, put it in a list, and sort it three times.

Other factors you need to consider when designing your report:

• Distribution of work between local (TRIMpl) and remote processing (database),
including database traffic, time requirements, and complexity.

• Design complexity and maintainability, including schedule deadlines, time
requirements, and maintenance.

Recommendations:

• The database is a shared resource. Use it sparingly.

• Keep the report as simple as makes sense.

Report Design Methods
 You can generate reports in a variety of ways; the most effective and efficient reports
usually comprise two or sometimes all three methods available to you with TRIMreport:

• SELECT-driven — uses subsets of table data. The report writer executes a detail
area for each row returned by a SELECT statement.

• List-driven — creates lists and extracts data from those lists (still uses SELECT).

• Trigger-driven — calls report blocks. Fields in each block extract information,
usually from lists.

Distributing Work
The way you write your queries and reports controls whether data processing is
performed on the database machine or on the reportwriter’s machine. For example, you
may write SQL that prints out the amount saved by applying a 10 percent budget cut
across operating expenses for each department. Requesting the processed information
from the database generates the new values. For example,

SELECT (budget - (budget * 0.10)) FROM table
TRIMreport Users Guide 17

Chapter 3 Design Considerations SELECT-driven Method
Or you can retrieve the data, store it in a list and process it locally:

SELECT budget FROM table

The second approach requires more complex processing but uses fewer database
resources since the database does not have to retrieve and process all the data rows. If
many people are using the database at the same time, the first approach has a greater
impact on other users than the second option.

You can also control the amount of work you require from the database by the way you
use TRIMreport commands. The same principles apply here: the simple version has a
straightfoward design and fast development time, but it’s larger and requires more from
the database.

For example, if you need to display data sorted three different ways, you could create a
TRIM block report:

BLOCK 1: SELECT * FROM table ORDER BY column1
BLOCK 2: SELECT * FROM table ORDER BY column2
BLOCK 3: SELECT * FROM table ORDER BY column3

The single-block report design option, which eliminates redundant code and reduces the
database interaction to one query is more memory-intensive at runtime and increases the
complexity and report-writing maintenance:

List = SELECT * FROM table ORDER BY column1
Call ALL_PURPOSE_BLOCK
SORT list by column 2
Call ALL_PURPOSE_BLOCK
SORT list by column 3
Call ALL_PURPOSE_BLOCK

SELECT-driven Method
The SELECT-driven method produces reports that are subsets of table data (and thus
produce meaningful information for the breaks, break SUM (group), and SUM (total)
defaults). The detail area is executed for each row returned from the database by the
SELECT statement. The SELECT-driven method relies on the SELECT control.

The SELECT method is not dynamic. For example, a report designed to retrieve specific
columns from a database table or tables expects the exact tables to exist whenever the
report is executed.

Default Behavior
You can instruct TRIMreport to generate default code for report designs with CREATE:

When you CREATE… TRIMreport generates…

Report Main trigger.

First block Block call in the main trigger.

Child block Child trigger in the parent block.

Sibling block POST-BLOCK trigger in the last block in the sibling chain.
TRIMreport Users Guide 18

Chapter 3 Design Considerations SELECT-driven Method
When you create a SELECT control, you have several options for laying out the data:

• DEF_HORZ creates fields in the detail area that correspond to the columns in the
SELECT.

• DEF_VERT lays the fields out top down without text.

• DEF_VER2 results in top-down field layout with column names the left of the
fields.

The fields are automatically given triggers, such as the one below, and text is added to
the blocks’ header text.

{
field = block-name.column-name;
}

In default behavior the main trigger calls the first block and the first block uses its CHILD
trigger to call a child block for each row returned. The child block executes its SELECT
and calls its sibling block via the POST-BLOCK trigger. For example, you can lay out the
report:

Main trigger calls BLK_A: block(BLK_A);
Execute BLK_A’s SELECT

For each row returned, execute the CHILD
trigger block (BLK_z);

Execute BLK_z’s SELECT
After last row, execute POST-BLOCK trigger:

block(BLK_y);
Execute BLKY_y’s SELECT

After last row, execute POST-BLOCK trigger:
block(BLK_B);

Execute BLK_B’s SELECT
After last row, execute POST-BLOCK trigger:
block(BLK_C);

Execute BLK_C’s SELECT
After last row, execute POST-BLOCK trigger:

block(BLK_t);
Execute BLK_t’s SELECT

The example that follows creates a SELECT-driven report that groups sales personnel
data by division. The main trigger prints a page header and calls the main report block
and prints the page footer. The main report block specifies the header text including the
G.PAGENUMBER variable. The SELECT statement is executed for the header

SELECT * FROM org

The main report block detail is printed and the data and attributes are defined for each
field. For example,

Field: Division
Row offest: 3, Column offset: 22, Field width: 10
Mask: A10
Trigger: FIELD

Text: Trigger/Function
1> {
2> field = MAIN.DIVISION;
3> }
TRIMreport Users Guide 19

Chapter 3 Design Considerations SELECT-driven Method
A blank report block footer is specified and control passes to the CHILD trigger which
calls the child report block (MAIN_1). The SELECT statement for the child report block is
executed:

SELECT id, name, job, salary, dept FROM staff WHERE
DEPT = &MAIN.DEPTNUMB

The child report block header for the group prints, followed by the detail lines for each
member of the group. When the last row of data for the group is complete, the child
report block footer prints. The footer calculates and prints the total of salaries for the
group — sum(SALARY).

Control returns to the MAIN report block to begin processing the next group. Each time
the SELECT is processed, data is retrieved directly from the database.

Examples
This SELECT-driven report design printed below was generated with TRIMlis, a
documentation utility. The syntax for generating a listing of the report design is

trimlis report-file-name

For more information on the TRIMlis utility, refer to the DesignVision User Guide.

Report Design
DESIGN REPORT ROOT NODE Version: 2216

Name: SALES_SALARIES
Creator: L.L. Langtry Create date: 28-JAN-1992 at 08:01
Modifier: L.L. Langtry Modify date: 28-JAN-1992 at 13:01
Page length: 60, Page width: 80

Trigger: MAIN
Text: Trigger/Function
 1>{
 2>open(); /* open output file */
 3>pageinate(header); /* print pageheader */
 4>block(MAIN); /* first block */
 5>paginate(footer|break); /* print page footer and break */
 6>close (); /* close output file */
 7>}

DESIGN REPORTBLOCK
Name: MAIN

Page:
Page length: 60, Page width: 80
Text: Report block select statement
 1>SELECT * FROM org

Text: Report block header
 1>
 2> SALES STAFF SALARIES
 3> (by Division)
 4> Page
 5>
TRIMreport Users Guide 20

Chapter 3 Design Considerations SELECT-driven Method
 Field: PgNo
 Row offset: 3, Column offset: 69, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>field = G.PAGENUMBER;

Text: Report block detail
 1>
 2> Department Number: Name:
 3> Manager:
 4> Division: Location:
 5>
 Field: DeptNumb
 Row offset: 1, Column offset, 22, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>{
2>field = MAIN.DEPTNUMB;
3>}

 Field: Manager
 Row offset: 2, Column offset, 22, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>{
2> FIELD = MAIN.MANAGER;
3>}

 Field: Division
 Row offset: 3, Column offset: 22, Field width: 10
 Mask: A10
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN.DIVISION;
3>}

 Field: DeptName
 Row offset: 1, Column offset: 55, Field width: 16
 Mask: A16
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN.DEPTNUM;
3>}

 Field: Location
 Row offset: 3, Column offset: 55, Field width: 14
 Mask: A16
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN.LOCATION;
TRIMreport Users Guide 21

Chapter 3 Design Considerations SELECT-driven Method
3>}

Text: Report block footer
1>
2>

 Trigger: CHILD
Text: Trigger/Function

1>block(MAIN_1);

Child reportblock:
DESIGN REPORTBLOCK
Name: MAIN_1

Text: Report block select statement
 1>SELECT id,name,job,salary,dept FROM staff
Text: Report block where filter
 1>(DEPT == MAIN.DEPTNUMB)

Text: Report block header
 1> ID NAME JOB SALARY
 2> ------ ------------- ----- --------

Text: Report block detail
 1>

 Field: ID
 Row offset: 0, Column offset: 11, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.ID; /* Move data to field */
3>}

 Field: NAME
 Row offset: 0, Column offset: 19, Field width: 12
 Mask: A12
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.NAME; /* Move data to field */
3>}

 Field: JOB
 Row offset: 0, Column offset: 39, Field width: 5
 Mask: A5
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.JOB; /* Move data to field */
3>}

 Field: SALARY
 Row offset: 0, Column offset: 52, Field width: 10
 Mask: $999999.99
 Trigger: FIELD

Text: Trigger/Function
TRIMreport Users Guide 22

Chapter 3 Design Considerations SELECT-driven Method
1>{
2> field = MAIN_1.SALARY; /* Move data to field */
3>}

Text: Report block footer
 1>
 2>
 3>

 Field: SUM_SALARY
 Row offset: 1, Column offset, 52, Field width: 10
 Mask: $999999.99
 Trigger: FIELD

Text: Trigger/Function
1>field = sum(SALARY);
3>}

Formatted Report
 SALES STAFF SALARIES
 (by Division)
 Page 1

Department Number: 10 Name: HEAD OFFICE
 Manager: 160
 Division: CORPORATE Location: NEW YORK

ID NAME JO SALARY
---- --------- ----------------
25 MOLINARE MGR $22959.20
25 LU MGR $20010.00
25 DANIELS MGR $19260.25
25 JONES MGR $21234.00

 ===========
$83463.45

Department Number: 15 Name: NEW ENGLAND
 Manager: 50
 Division: EASTERN Location: NEW YORK

ID NAME JO SALARY
---- --------- ----- -----------
25 HANES CLERK $20659.80
25 ROTHMAN CLERK $16502.83
25 NGAN CLERK $12508.20
25 KERMISCH CLERK $12258.5

===========
$61929.33

List-Driven Method
One reason TRIMreport is so flexible and powerful is because of its list feature. A list in
TRIM terms is a matrix of data stored as a variable. Each cell in the list can contain data
of any type, including another list. You can manipulate the columns of data in the lists
with the array of built-in list functions.
TRIMreport Users Guide 23

Chapter 3 Design Considerations SELECT-driven Method
In a list-driven report design, data for the report is retrieved from the database and
stored in a list. Data manipulation required by the report can then be performed locally
on the list. Report blocks in the design can select all or portions of the data from the list
for the report.

In the example that follows, a report list is created with list_open(). This function can
be used to define a list, load a list from a file, or load a list from the database. In a list-
driven report design, a list variable is used in place of a SELECT statement with the list
data described in a SELECT:

ol = list_open(“SELECT deptnumb, deptname, manager
 FROM org”, 100);

The variable declaration defines the list, ol, as having up to 100 rows of data retrieved
from three columns by a SELECT statement.

The data in the list can be selected by a list reference in the report block SELECT control:

[g.ol, deptnumb, deptname, manager]

The first time the block is called, the contents of each column of the list g.ol is copied to
the specified variables, deptnumb, dept name, and manager. After the detail area is
placed, the current row pointer increments and the values copied out again. The detail
area is repeated for each row starting from the current row to the last row (100 or less) in
the list.

To write out the data, you can create fields and include specifications such as justification
and data type:

{
field = MAIN.DEPTNAME;
}

Examples

Report Design
DESIGN REPORT ROOT NODE Version: 2216

Name: trig_d
Creator: J. Smith Create date: 10-FEB-1992 at 09:01
Modifier: J. Smith Modify date: 12-FEB-1992 at 12:01
Page length: 56, Page width: 80

Trigger: MAIN
Text: Trigger/Function
 1>{
 2>list ol;
 3>list sl;
 4>
 5>ol = list_open(“SELECT deptnumb,deptname,manager FROM org”,100);
 6>open(); /* open output file */
 7>paginate(header); /* print page header */
 8>block(MAIN); /* first block */
 9>paginate(footer|break); /* print page footer and break */
 10>close();
 11>}
TRIMreport Users Guide 24

Chapter 3 Design Considerations SELECT-driven Method
DESIGN REPORTBLOCK
Name: MAIN

Page:
Page length: 56, Page width: 80
Text: Report block select statement
 1>[g.ol,deptnumb,deptname,manager]

Text: Report block detail
 1>
 2> Department ID: Department Name:
 3> Manager:
 4> ===
 5>
 Field: DEPTNAME
 Row offset: 1, Column offset, 52, Field width: 16
 Mask: A16
 Trigger: FIELD

Text: Trigger/Function
1>{
2>field = MAIN.DEPTNAME; /* Move data to field */
3>}

 Field: MANAGER
 Row offset: 2, Column offset, 17, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field= MAIN.MANAGER;
3>}

 Field: DEPTNUMB
 Row offset: 2, Column offset, 17, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN.DEPTNUMB;
3>}

 Trigger: CHILD
Text: Trigger/Function

1>{
2>g.sl = list_open(“SELECT id,name,salary FROM staff”
3> “WHERE dept = &main.deptnumb “,100);
4>block(MAIN_1);
5>}

Child reportblock:
DESIGN REPORTBLOCK
Name: MAIN_1

Text: Report block select statement
 1>[g.sl,id,name,salary]

Text: Report block detail
 1>
TRIMreport Users Guide 25

Chapter 3 Design Considerations SELECT-driven Method
 Field: ID
 Row offset: 0, Column offset: 2, Field width: 8
 Mask: 99999999
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.ID; /* Move data to field */
3>}

 Field: SALARY
 Row offset: 0, Column offset: 55, Field width: 8
 Mask: 999999.99
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.SALARY; /* Move data to field */
3>}

 Field: NAME
 Row offset: 0, Column offset: 24, Field width: 10
 Mask: A10
 Trigger: FIELD

Text: Trigger/Function
1>{
2> field = MAIN_1.NAME; /* Move data to field */
3>}

Formatted Report
The top of the first page of the formatted report looks like this:

 Department No: 10 Department Name: HEAD OFFICE
 Manager: 160

===
160 MOLINARE 22959.20

210 LU 20010.00

240 DANIELS 19260.25

260 JONES 21234.00

 Department No: 15 Department Name: NEW ENGLAND
 Manager: 50

===
 50 HANES 20659.80

 70 ROTHMAN 16502.83

110 NGAN 12508.20

170 KERMISCH 12258.50
TRIMreport Users Guide 26

Chapter 3 Design Considerations SELECT-driven Method
 Department No: 20 Department Name: MID ATLANTIC
 Manager: 10

===
 10 SANDERS 18357.50

 20 PERNAL 18171.25

 80 JAMES 13504.60

190 SNEIDER 14252075

Trigger-Driven Method
The trigger-driven method of report design uses triggers to call report blocks and place
headers or footers, forcing them to take the place of block detail.

Trigger-driven reports are completely dynamic, parameter-driven reports that allow you
to bypass most of TRIMreport’s implicit controls.

Generally, the control for the trigger-driven method is the main trigger.

The example that follows prompts for a table name, retrieves data from the table into a
list, ll, and uses the MAIN trigger to call a report block, PRINT_ROW.

{
list ll;
char table[30];

table = prompt(“Please enter TABLE name>”);
ll = list _open(“SELECT * FROM “^^table,100);
open();
pageinate(header);
while (list_rows(ll)) { /* While there are rows */

block(PRINT_ROW); /* Print a row */
list_mod(ll,0); /* Delete a row */
}

paginate(footer | break);
close();
}

The block called by the MAIN trigger, PRINT_ROW, contains only a header area with
one field of character data that is right-justified and has an A5 mask.

{
int i;
for (i = 0; i<list_col(g.ll); i++){ /* For each col */

field = list_curr (g.ll,i); /* Print col value */
g.pageoffset = g.pageoffset + 10; /* Move 10 spaces */
}

g.pageoffset = 0; /* Reset to zero */
TRIMreport Users Guide 27

Chapter 3 Design Considerations SELECT-driven Method
The example prompts the user for a table name, then dynamically selects rows from the
table and prints/displays all the columns in the table. Trigger-driven reports preceded
the list-driven alternative and remains useful if you need to create completely dynamic
reports.

Examples

Report Design
In the example that follows the main trigger retrieves data into two lists, ol and ml. First
data is retrieved for the ol list

SELECT deptnumb, deptname, manager FROM org

Then data is retrieved for the ml list with a WHERE condition based on values in the ol
list:

SELECT id, name,dept,salary FROM staff
WHERE dept = “^^list_curr(ol,0)^^”

The SELECT statement imposes a limit of 100 on the number of rows retrieved into the
list. This is sufficient for the entire org and staff example database tables. If the tables
contained more than 100 rows, the list_more() function can retrieve additional data
from the database.

The MAIN report block contains the header and defines the fields — m1, m2, m3 — into
which data is retrieved.

The first sibling report block, STAFF, defines the three fields — o1, o2, o3 — into which
the data is placed.

The second sibling report block, SA, specifies a header and field — sal — into which the
salary total for each group is placed.

DESIGN REPORT ROOT NODE Version: 2216
Name: trig_d
Creator: J. Smith Create date: 10-FEB-1992 at 09:01
Modifier: J. Smith Modify date: 12-FEB-1992 at 12:01
Page length: 56, Page width: 80

Trigger: MAIN
Text: Trigger/Function
 1>{
 2>list ml;
 3>list ol;
 4>int i,j;
 5>numeric tsalary;
 6>
 7>open(); /* open output file */
 8>paginate(header); /* print page header */
 9>
 10>ol=list_open(“SELECT deptnumb,deptname,manager FROM org”,100);
 11>for(i;0; i < list_rows(ol); i++ {
 12>block(MAIN); /* first block */
 13>ml = list_open(“SELECT id,name,dept,salary FROM staff”
 14> “WHERE dept = “^^list_curr(ol,0)^^” “,100);
TRIMreport Users Guide 28

Chapter 3 Design Considerations SELECT-driven Method
 15> tsalary = 0;
 16> for (j=0; j < list)rows (ml); j++ {
 17> block(STAFF);
 18> tsalary = tsalary +list_curr(ml,3);
 19> list_next(ml);
 20> }
 21> block(SA);
 22> list_next(ol);
 23> }
 24>paginate(footer|break); /* print page footer and break */
 25>close();
 26>}

DESIGN REPORTBLOCK
Name: MAIN

Page:
Page length: 56, Page width: 80
Text: Report block header
 1>
 2>
 3> Department No: Department Name:
 4> Manager:
 5> ===
 Field: m1
 Row offset: 2, Column offset: 17, Field width: 2
 Mask: 99
 Trigger: FIELD

Text: Trigger/Function
1>field = list_curr(g.ol,0);

 Field: m2
 Row offset: 2, Column offset: 47, Field width: 20
 Mask: A20
 Trigger: FIELD

Text: Trigger/Function
1>field = list_curr(g.ol,1);

 Field: m3
 Row offset: 3, Column offset: 11, Field width: 20
 Mask: A20
 Trigger: FIELD

Text: Trigger/Function
1>field = list_curr(g.ol,2);

Sibling reportblock:
DESIGN REPORTBLOCK
Name: STAFF

Page:
Page length: 56, Page width: 80
Text: Report block header
 1>
 2>
 Field: o1
 Row offset: 0, Column offset: 3, Field width: 3
 Mask: 999
 Trigger: FIELD

Text: Trigger/Function
TRIMreport Users Guide 29

Chapter 3 Design Considerations SELECT-driven Method
1>field = list_curr(g.ml,0);

 Field: o2
 Row offset: 0, Column offset: 20, Field width: 20
 Mask: A20
 Trigger: FIELD

Text: Trigger/Function
1>field = list_curr(g.ml,1);

 Field: o3
 Row offset: 0, Column offset: 45, Field width: 10
 Mask: 999999.99
 Trigger: FIELD

Text: Trigger/Function
1>field = list_curr(g.ml,3);

Sibling reportblock:
DESIGN REPORTBLOCK
Name: SA

Page:
Page length: 56, Page width: 80
Text: Report block header
 1>
 2>

 Field: sal
 Row offset: 0, Column offset: 45, Field width: 10
 Mask: 999999.99
 Trigger: FIELD

Text: Trigger/Function
1>field = g.tsalary;

Formatted Report
The top of the first page of the formatted report looks like:

 Department No: 10 Department Name: HEAD OFFICE
 Manager: 160

===
160 MOLINARE 22959.20

210 LU 20010.00

240 DANIELS 19260.25

260 JONES 21234.00

 Total salary =83463.45
 Department No: 15 Department Name: NEW ENGLAND
 Manager: 50

===
 50 HANES 20659.80

 70 ROTHMAN 16502.83
TRIMreport Users Guide 30

Chapter 3 Design Considerations SELECT-driven Method
110 NGAN 12508.20

170 KERMISCH 12258.50

Total salary =61929.33

 Department No: 20 Department Name: MID ATLANTIC
 Manager: 10

===
 10 SANDERS 18357.50

 20 PERNAL 18171.25

 80 JAMES 13504.60

190 SNEIDER 14252075

 Total salary =64286.10
TRIMreport Users Guide 31

TRIMreport Users Guide

Chapter 4

Designing a Report

When you begin working with TRIMreport, you probably want to have the application
create default designs for you to work with. To develop your own design, you modify
elements in the default, and where necessary, add new elements. This chapter describes
typical tasks of most report development and walks you through the procedures.

Step by Step
The first task, once TRIMreport is installed, is to start the application. To get defaults, you
must connect to a database and identify tables and columns for your report.

1. Start TRIMreport and connect to a database following the instructions for your
operating system and database in the Connect Guide.

For example:

trimrep uid/pwd [Enter]

NOTE: As you complete this introduction, read each procedure carefully before executing any
commands. TRIMreport has NO “undo” button. If you make a mistake and cannot
remember how to “step backwards” you’ll have to start from the beginning.

☞ Creating a basic report

You construct reports using blocks. Your entire report can be in a single block or many
blocks. You create and maintain each block individually. This introduction uses a table
common to many databases, STAFF, and creates a single-block report.

The first window that appears when you start TRIMreport is the CHOOSE REPORT. To
create your report, begin by naming the report, identifying the creator (you), and
specifying a page length and width, as illustrated. [Tab] from one field to the next. Then
create a single report block with the same name as the report. For reports with multiple
blocks you can use any names that are meaningful.

NOTE: If you are running against an Oracle database, specify 140 for the page width. For all
other databases, 80 characters is wide enough to fit all the columns. (Oracle leaves lots of
extra room for numbers and thus, the columns are wider than for any other database.)

1. Type “MY_REPORT”, press [Tab]. (Note: Must use an underscore.)

2. Type “MYSELF” (or your name, if you prefer) and press [Tab].

3. Type “66”, press [Tab], type “80”if you’re not using an Oracle database, “140” if
you are.
TRIMreport Users Guide 32

Chapter 4 Designing a Report Step by Step
Your screen should look like this:

4. [Tab] to the CREATE action and press [Enter].

5. Type “MY_REPORT” and [Tab] to the CREATE action and press [Enter].

You’ll see a blank screen that represents the empty report detail and a row of active
function keys at the bottom:

☞ Writing the Block Control

Now you define the report block, that is specify this block’s data-retrieval instructions. In
this case, you define a SELECT control with a single SELECT statement.Type the SELECT
statement as it appears in the following dialog box. This is standard SQL, which you
should recognize.

The asterisk (*) specifies all the columns in the table and ORDER BY specifies the
columns on which to arrange the data numerically. Note that unlike standard SQL,
however, you do not end the line with a semicolon(;).

After you complete the SQL, you can validate or file the statement, load another
statement that was previously saved, and specify the report to be horizontal or vertical.
When you choose a report style and press [Enter], TRIMreport accesses the database,
TRIMreport Users Guide 33

Chapter 4 Designing a Report Step by Step
selects the definitions and labels of all the specified columns in the specified tables and
returns an “OK” at the bottom of the screen when the query is complete.

NOTE: SQL is conventionally written in uppercase, but case only matters if you are working
with a Sybase database. Since Sybase databases distinguish between upper and lower
case, you must know the exact representation of table and column names.

1. Press [F5] to display the DEFINE REPORTBLOCK dialog box.

2. [Tab] to the SELECT action and press [Enter].

3. In the DEFINE SELECT dialog that appears on your screen, make sure that your
cursor is on the line **** End of text ****.

4. Press [F4] to open a line for typing.

5. Type “select * from staff order by dept, job”

6. [Tab] to DEF_HORZ and press [Enter].

7. After you see the status “OK DEF_HORZ performed” at the bottom of the window,
press [F3] twice to see the default report definitions.
TRIMreport Users Guide 34

Chapter 4 Designing a Report Step by Step
If you didn’t specify enough characters to fit all the detail on one line, it wraps. If the
page width is wider than the window, you can scroll to the right and left to see all parts.

☞ Running the report

Running the report actually instructs TRIMreport to first validate the design and then
select the specified data (from the SELECT control) from the database to create your
report.

1. Press [F3] twice to go to the CHOOSE REPORT dialog.

2. [Tab] to the RUN action and press [Enter].
TRIMreport Users Guide 35

Chapter 4 Designing a Report Step by Step
This is what appears in the report:

☞ Saving a Report’s Format

While it does look like all the information is in the report (the columns extend farther
right than the window is wide), this isn’t a report you could hand to your manager. Now
it’s time to improve the report’s appearance, changing the data format, adding breaks,
and a report title. But first, save the current format.

1. Press [F3] to return to the CHOOSE REPORT dialog box.

2. [Tab] to the FILE action and press [Enter].

3. Accept the default name and press [Enter] to file (save) the design in your local
directory.

The status line reads OK FILE performed

☞ Modifying the Report

You modify the report’s design, or format, in the report design window, which shows the
default header and field detail lines. You are going to remove the ID column and
heading, move a couple columns and their headers, rename some headers, change the
format masks here and there, and add some symbols to clarify values. To access each of
the report areas (header, footer, and detail) press the associated function key.

1. On the CHOOSE REPORT dialog, [Tab] to the MODIFY action and press [Enter].

2. On the CHOOSE REPORTBLOCK dialog, [Tab] to the MODIFY action, and press [Enter].
TRIMreport Users Guide 36

Chapter 4 Designing a Report Step by Step
Remove Column & Header
1. Press [F4] to enter the detail area.

2. Put your cursor in the first series of 9s and press [F4] to cut the detail.

If you want to make sure it’s the correct column first, press [F2] and make sure that
Name: ID before you press [F4] to cut.

3. To remove the header text, press [F3] to leave detail, [F1] to enter Header and [F1]
again to edit text.

4. Type over the line and the label “ID” putting blank spaces in with the spacebar.

NOTE: Be really careful here, because there’s no undo or backup, unless that has been mapped.
You must know how your keys have been mapped.

Adjust Format Mask
Before you move the DEPT column and heading, adjust the format mask. DEPT only
needs two digits.

1. Press [F3] to leave the header area, [F4] to edit detail, and [Tab] to the 999 under
DEPT.

2. Press [F2] for the DEFINE FIELD dialog.

3. [Tab] to the Mask field and type 99. Press the spacebar to remove the rest of the 9s.

4. Press [F3] to return to the detail area.

Move Columns & Headers
1. Press [F4] to cut the detail, move the cursor to the right edge of your screen, and

press [F5] to paste the detail in its new location.

2. Move the detail for “JOB” the same way. [Tab] to the Cs under or to the left of “JO”
(JOB may be truncated since heading information is screen-dependent), press [F4],
move your cursor to the new location (about 5 spaces to the right of the DEPT’s 99)
and press [F5].

3. Now put new labels in the header. Press [F3] to leave the detail area and [F1] twice to
enter the header text area.

4. Type DEPT and JOB with a row of dashes over the detail items. While we’re
modifying the header text, retype NAME about five spaces away from the end of the
JOB detail, and put a dashed line under it, as illustrated below.
TRIMreport Users Guide 37

Chapter 4 Designing a Report Step by Step
5. To move the detail for NAME, return to the detail area ([F3], [F3], [F4]) and shift the
column to the left (put your cursor in the new beginning location and press [F6]).

If your report is wider than your screen, you see the 999s of a new column appear to
the right.

6. Move the cursor and continue to shift the new column left [F6] until it’s about 5
spaces away from the end of the NAME column.

Change Masks
The first label is YEARS, which refers to the number of years the employee has been at
the company. Change the mask so there are only three digits, which is more logical for
that information. If you can remember all the detail items, you can edit and adjust them
at one time and then go into the header area and make your changes there. If this is your
first time using a reportwriter, you may want to take the extra time to switch between the
detail fields and the header text.

1. Put your cursor on the first 9 and press [F2].

2. [Tab] to the Mask field, type 999 and press the spacebar to erase the rest of the
numbers. Press[F3] when you’re finished.

3. Press [F3], [F1], and [F1] to go to the header text area. Type “SENIORITY” over the
999 you just edited and center it over the numbers.

4. Press [F3] twice, [F4], [Tab] to the detail, and press [F2] to examine the next detail
column.

The mask for this field is correct, so adjust the column to the left a bit ([F3], move the
cursor to the left and [F6] until you are satisfied with the placement) and put a label in
the header area.

([F3], [F1], [F1] and type)

Repeat your actions for the next (last) unidentified field, which turns out to be labelled
COMM. This field shows the commissions for each employee. Move the field and enter a
suitably descriptive label for the column. Clean up any leftover header text. Make sure
you scroll all the way to the right to find any text there, especially if you are using an
Oracle database.
TRIMreport Users Guide 38

Chapter 4 Designing a Report Step by Step
Your report design area should look like this:

Resize
If you created the report with a width of 140, you can resize the “page” and recenter the
headings.

1. Press [F3] until you get to the CHOOSE REPORT dialog.

2. [Tab] to the width value and change it to “80”.

3. [Tab] to the RESIZE action and press [Enter].

Refine the Report
Refine the presentation with $ signs for the salaries and commissions. Be sure you are in
the detail area. (Press [F3] again and then [F4].)

1. Press [F1] to work with text.

2. [Tab] to the SALARY field and add a dollar sign ($), adjusting the detail column with
[F6] or [F7] as appropriate.

3. Move your cursor to the COMMISSION detail and add another $.

4. Add a report title in the header. ([F3], [F3], [F1], [F1]).

5. Make sure the cursor in the topmost position and press [F4] two or three times to
create a few blank lines.

6. Type “DEMO COMPANY” and press [F6] to center the text.

7. Move the cursor down a line.

8. Type “Confidential Staff Report as of &g.time” and press [F6] to center.

G.TIME is a global variable that inserts the current date into the report and
automatically updates each time you run the report.
TRIMreport Users Guide 39

Chapter 4 Designing a Report Step by Step
Your design should look like this:

Run the Report
You can run the report now, if you want to check its appearance.

1. Press [F3] until you get to the CHOOSE REPORT dialog.

2. [Tab] to the RUN action, and press [Enter].
TRIMreport Users Guide 40

Chapter 4 Designing a Report Step by Step
Grouping Information (Creating Breaks and Summations)
You can create summation fields with SQL or TRIMpl for any numeric column in a
report. You can also use TRIMreport’s automatic feature, SUMDFLT, to create the
summations for entire blocks (CHOOSE REPORTBLOCK > SUMDFLT) or over each break
(DEFINE BREAK > SUMDFLT).

SUMDFLT-generated summary fields for breaks typically appear in the footer area.
These summations only work for fields that correspond to database detail fields (field
structure variables).

{
field = SUM(block_name.column_name);
}

Now define a report break on the DEPT field. Total the SALARY and COMMISSION for
each department without duplicating the department code for each employee.

1. Press [F3], [Tab] to the MODIFY action, and press [Enter].

2. In the CHOOSE REPORTBLOCK window, [Tab] to the BREAK action and press [Enter].

3. Type “N” in the Duplicate field.

4. [Tab] to the CREATE action and press [Enter].

5. In the Fields field type “DEPT”

6. [Tab] to the SUMDFLT action and press [Enter] to create a total for each numeric
column.

Modify Totals
The default report now breaks for each new DEPT value and the numeric columns —
SALARY and COMMISSION — are totalled. The DEPT number is not duplicated for the
second NAME, because you specified “N” for duplicates when you defined the break.
The DEPT and SENIORITY fields do have totals because they are numeric. Remove the
totals. The totals created for breaks actually are in the footer textarea, below the report
detail.

1. Press [F3] to return to the DEFINE BREAK dialog and [Tab] to MODIFY action. Press
[Enter].

2. Press [F2].
TRIMreport Users Guide 41

Chapter 4 Designing a Report Step by Step
3. Put the cursor in the footer text under DEPT, 99, and press [F4] to remove the field.

4. Repeat the cut for SENIORITY summation.

5. Press [F1] and use the spacebar to delete the “==” text in the DEPT column and add $
signs in the SALARY and COMMISSION columns.

You now have a professional-looking report that breaks at each department, giving
totals of both salary and commission for each department.

Edit the report to provide a total for all departments of DEMO Company.

6. Press [F3] four times to get to the CHOOSE REPORTBLOCK dialog for MY_REPORT.

7. [Tab] to the SUMDFLT action and press [Enter] to ask for a total for the entire report
block.

8. Clean up the report design, adding $s where appropriate and cutting the summary
fields for DEPT and SENIORITY.

9. Return to CHOOSE REPORT dialog and select the RUN action.

You have completed a report with TRIMreport and only written one line of code, “select
* from staff order by dept, job”.
TRIMreport Users Guide 42

Chapter 4 Designing a Report Printing Your Report
Printing Your Report
Executing the TRIMreport RUN action generates data on your screen. To create a printable
report, you must create an executable with TRIMgen and run it with TRIMrun. You can
then print the results, report_name.out, to a printer, according to your operating
system’s procedures. For more information see, “Running/Printing Reports” on page 50.

Controlling the Printer
The TRIMpl function pset() lets you enter a character string as an X,Y coordinate to
change fonts, insert form feeds, and otherwise control the printer’s functioning from the
reportblocks’ control.

The character string is not part of the output buffer and thus occupies no space. It is
merely associated with an X,Y (G.LINENUMBER, G.PAGEOFFSET) position.

When you issue a page break (for example, paginate(break);) each character of the
output buffer is copied to the output file. Before each character is copied, TRIMreport
checks to see if there is an associated string at the current X, Y location. If there is an
associated string, it is written to the output file.

pset() allows you to send escape codes to a printer. When a report is run within
TRIMreport, the function is ignored.

Typical use includes highlighting a field based on a value. For example, the field trigger:

{ int highlight;
if (BLK.SALARY 100000) highlight = true;
else highlight = false;

if (highlight) pset(-1, -1, “0x1b47”); /* Highlight on */
field = BLK.SALARY;
if (highlight) pset (-1, -1, “0x1b40”); /* Highlight off */
}

Saving Escape Codes
Since a report may be printed to different output devices, TRIMreport provides a file,
TRIM.CC, that contains escape codes. Each line in this file ends in a carriage return and
contains a symbol (case-insensitive) and an associated escape sequence string. For
example,

RESET “0x1c40”
BOLD_ON “0x1b47”
BOLD_OFF “0x1b48”
UND_ON “0x1b2d31”
UND_OFF “0x1b2d30”
ITAL_ON “0x1b34”
ITAL_OFF “0x1b35”
NEC12CPI “0x1b4d”
NEC10CPI “0x1b50”
ORANGE “0x1b7235”
GREEN “0x1b7236”
BROWN “0x1b7237”
TRIMreport Users Guide 43

Chapter 4 Designing a Report Advanced Procedures
By substituting the symbol for the escape sequence, the field’s trigger code is easier to
read:

{ int highlight;
if (BLK.SALARY 100000) highlight = true;
else highlight = false;

if (highlight) pset(-1, -1, BOLD_ON); /* Highlight on */
field = BLK.SALARY;
if (highlight) pset (-1, -1, BOLD_OFF); /* Highlight off */
}

To change to a new printer with different escape sequences:

• Change the codes in the TRIM.CC file.

• Regenerate all the reports with a batch file.

Advanced Procedures

Calling Other Reports or Applications
You can have your report call another report or an application by simply using the
call() function. This function also has provisions for passing parameters. When one
design calls another, the database connections are not severed.

Reports or applications can also return values via the return() function in the main
trigger.

Making a Report Database-Independent
1. Create a field in the detail area and create a break on that field. Use the following

SELECT to retrieve the data from any SQL database:

SELECT dept, name, salary
FROM staff
ORDER BY dept

2. Create a character field, BB, in the detail area with a mask of “A2” and a trigger:

{
field = BLK.BB;
}

3. Create a variable, BB, in the PRE-BLOCK trigger of the window:

{
char BB[2];
; /* must have a “;” or any expression */
}

4. Create a WHERE control that contains the following:

set_bb_function()

5. Create a SET_BB_FUNCTION that contains the following:
TRIMreport Users Guide 44

Chapter 4 Designing a Report Advanced Procedures
{
BLK.BB = substr(BLK.DEPT, 1, 1);
return(1);
}

6. Create a BREAK on the BB field.

The field breaks when the variable changes. The variable is not an internal node
variable and must be created in the PRE-BLOCK trigger.

7. Change the value of BB before the break check occurs by using the WHERE control.
The WHERE control is invoked after each row is returned but before anything else
happens, including the break check.

The code in the SET_BB_FUNCTION causes a break to occur when the first digit of dept
changes, but it can be any algorithm that generates a new value when a break is needed.

The assignment of a value to the field is inconsequential. Also, you must create a variable
in the PRE-BLOCK trigger because the break references it.

Specifying a Single Pagetext Header/Footer
You can have all blocks in a report use the same pagetext header and footer by letting all
blocks inherit the pagetext header and footer areas from the parent block.

For a block to be generated and, therefore, callable from a trigger, it must be one of the
following:

• First block in a design.

• Sibling of a generated block.

• Child of a generated block that contains a SELECT statement.

For the pagetext footer and header to be automatically inherited by all blocks, the parent
block must contain pagetext header and footer text and include a SELECT statement
(with CREATE, DEF_HORZ, DEF_VERT, or DEF_VER2) or a list reference.

In the SELECT statement:

SELECT 1 FROM table

In a list reference

[G.DATA_LIST]

If you don’t include a SELECT statement, the main report trigger generates an error
message when it calls the child block. For example,

INTERNAL: exec BLK

The block was never generated (because the parent block did not have a SELECT).
Adding a SELECT and creating the block (CREATE, DEF_HORZ, DEF_VERT, or
DEF_VER2 action), although inconvenient, solves the problem and does not affect
performance since the parent block is never called —it exists solely to provide a standard
pagetext header and footer.
TRIMreport Users Guide 45

Chapter 4 Designing a Report Advanced Procedures
NOTE: The main trigger must be changed to call the first child block rather than its parent to
avoid executing the parent block’s SELECT statement.

Fields to Center Headings
Fields are useful to generate a centered heading for a report. For example, you may want
an indentifying title to appear on each of the several similar reports. Create a field in the
pagetext header area with a trigger like this:

{
field = getenv(DIVISION_NAME_SYMBOL);
}

When the report is run and the field is executed, the content of DIVISON_NAME_SYMBOL
is copied to the output buffer. If the field is centered, the data is centered in the pagetext
header area. Centering the field in the pagetext header area centers everything within the
field automatically.

Transforming Values
You can suppress data in a field c or translated it to another value. For example, a block
uses the following SELECT for certain job values (for example, “MGR”) for which the
values in the salary column are suppressed:

SELECT name, job, salary
FROM staff

The detail area for the block by default contains

 NAME JOB SALARY
 CCCCCC CCCCCC $99,999

{ { {
field=BLK.NAME; field=BLK.JOB; field=BLK.SALARY;
} { {

You suppress the specified value in the job column — in the following example, “MGR”
— by changing the salary field’s trigger to

{
if (BLK.JOB != “MGR”) field = BLK.SALARY;
}

Multiple Columns from One Field
To change a field’s X and Y positions when writing to the output buffer you use the
special variables G.LINENUMBER and G.PAGEOFFSET.

{ int i;
for (i=1; i<5; i++) {

field = i;
G.PAGEOFFSET = G.PAGEOFFSET + 10;
TRIMreport Users Guide 46

Chapter 4 Designing a Report Second Tutorial: Two-Block Report
G.LINENUMBER++;
 }
}

The trigger example above causes a single field to generate the following four lines of
output:

1
 2
 3
 4

This is extremely useful for reports that allow dynamic numbers of columns. By
manipulating G.LINENUMBER and G.PAGEOFFSET, field can write to any location within
the page dimensions.

NOTE: G.LINENUMBER and G.PAGEOFFSET do not change fields that belong to the pagetext
header or footer areas.

Second Tutorial: Two-Block Report
You have now followed the procedure to create, design, and format a very basic report
with only one report block. Typically reports require more than a single block to collect
and communicate the information that people need. This tutorial provides an example of
a two-block report and demonstrates how to use different features of TRIMreport.

You should be comfortable with TRIMreport navigation to complete this tutorial, since it
shows more advanced features of TRIMreport and takes advantage of shortcuts.

The report shows personnel in each department and their sales and commission totals.

☞ Create Report with One Block

Create a report using two tables ORG and STAFF , which have a one to many
relationship.

1. CHOOSE REPORT dialog, complete the Name, Creator, page length, and width fields.
> CREATE.

2. CHOOSE REPORTBLOCK dialog, complete Name: ORG.

3. [Tab] to CREATE [Tab]> SELECT.

4. DEFINE SELECT> [F4], type “select * from org”> DEF_HORZ.

5. [F3] > [F3] to design window.

6. Clean up the report beginning with Detail: [F4], [Tab], [F2].

7. DEPTNUMB only requires 2 digits, MANAGER 3 digits.

[Tab] to NEXT and press [Enter] to change the next field.

8. After the 5th Field, [F3] to return to design window and move the columns. ([F6]).

9. Adjust the header text over each column ([F1], [F1]). Don’t forget to scroll to the
right for “leftover” text or you may get an error message if you try to resize your
report.
TRIMreport Users Guide 47

Chapter 4 Designing a Report Second Tutorial: Two-Block Report
☞ Create Second Block

Now create a child block that shows information from the STAFF table. This child block
inherits attributes, including pagetext from its parent.

1. CHOOSE REPORTBLOCK > CHILD > Type “STAFF”> CREATE .

Notice that that the status line at the bottom of the window says “Block: STAFF” and
you see the “parent” design in the design window.

2. [F5] > SELECT > [F4] > Type “select * from staff where dept =
&p.deptnumb” > DEF_HORZ.

The & indicates a variable replacement for the value. The current deptnumb value
from ORG is substituted for each select (one per detail line) before it goes to the
database. You could type “parent.deptnumb” or “ORG.deptnumb”.

3. [F3] > [F3] to see the second block detail in your report. Clean up the appearance the
same way you tidied ORG columns and headers.

Dept only needs 2 digits, ID and Year 3 digits. In this exercise, put the $ for SALARY
and COMM inside the DEFINE FIELD Mask field so that the symbol travels with the
values. When you’ve completed all 7 fields, press [F3].

4. Indent the STAFF detail under Dept. Name to give the report a visual hierarchy.
([F7])

5. Clean up the header text ([F1], [F1]).

6. Fiddle with the header and detail lines until they are pleasing. Add two blank lines
in the STAFF header text.

7. [F3] > [F3] > [F3] > [F3] > FILE > “filename.”

8. RUN.

9. To further modify STAFF, from the CHOOSE REPORTBLOCK> LIST and choose
STAFF from the list that appears.

☞ Create Sum Values for Second Block

1. Select STAFF block. In CHOOSE REPORTBLOCK for Staff, select SUMDFLT.

2. Remove the summations that don’t make sense, leaving only the Salary and
Commission.

3. Create an explanatory footer: “Total for dept:” and create a field to display the
department number.

4. [F2] > [F1] > Type “Total for dept:” > [F3] > [F2] .

5. Type “DEPT” > NEWFIELD.

6. DEFINE FIELD as number, accept right justify, mask of two digits (99).

7. TRIGGER > [F4] > Type “ field = p.deptnumb;” (TRIMpl code)

8. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.

9. Don’t forget to resize the report.
TRIMreport Users Guide 48

Chapter 4 Designing a Report Second Tutorial: Two-Block Report
☞ Add Report Title and Pagenumbering

1. CHOOSE REPORTBLOCK > PAGETEXT > MODIFY > [F1] > [F1]

2. Insert 3 lines [F4] x3, then type “Department Report as of” press [F6]

3. Type “&g.time” press [F6].

4. [F3] > [F3] > [F2] > [F1] > [F3] > [F1].

5. Type “Page: &g.pagenumber” > [F6]

6. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.

☞ Add Continuation Information

Notice that when you’re looking at the report, if you press [F2] you see that the report is
more than a single page long.

1. [F3] > MODIFY > LIST > STAFF.

2. [F3] > PAGETEXT > MODIFY > YES > [F1] > [F1].

3. Replace existing text with “continued for department &p.deptnumb”. [F6]

4. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.

☞ Changing G.TIME Format

With all the recent attention being paid to Year 200 issues, you may want to format your
report date more specifically, just to keep everyone comfortable in your office.

1. [F3] > MODIFY (ORG) > PAGETEXT > MODIFY > [F1] > [F1].

2. Delete the text “&.gtime”.

3. [F3] > [F2] > Type “DATE” in the Name: field > NEWFIELD.

4. Complete the dialog box as follows: Data type is DATE, accept default justification,
Mask is HH:MI:SS DD-MON-YYYY.

5. TRIGGER > [F4] > Type “field = SYSDATE;”

6. [F3] > [F3] > [F6] to adjust field location.

7. [F3] > [F3] > [F3] > [F3] > FILE > RUN.

Pagetext now that it has been changed is no longer inherited. If you wanted the
pagetext for STAFF to also have a date, you would have to follow the same
procedure for the staff pagetext header.

After completing the step-by-step in “Designing a Report” on page 32 and this tutorial,
you have executed nearly all the actions and commands of TRIMreport.
TRIMreport Users Guide 49

TRIMreport Users Guide

Chapter 5

Running Your Report

Running/Printing Reports
To run a report you use TRIMrun with the report name. You can use options to specify
report performance and output. TRIMrun executes compiled code, which makes the
applications, reports, and stand-alone applications interactive. It is also called the
“runtime.”

trimrun [runfile] [DB-login] [out-file] [options] [-p parms]

The runfile must have a .run file name extension.

You must specify DB-login only if the user is going to interact with a database. You can
also specify the database connection in the application.

You use out_file option with report designs to direct output to the file name given.
This example command creates a report file named myrep.out:

trimrun myreport myname/mysecret myrep
TRIMreport Users Guide 50

Chapter 5 Running Your Report Running/Printing Reports
Options

-dn Debug error number n.
Use -d with no error number to see all errors.

-f string Specifies a string to use for the form feed. The default is a universal form
feed command. To specify “no form feed” use the switch with no string
argument.

-k filename Input (playback) keys from filename.

-m Displays memory usage (number of bytes allocated.)

-o filename Output (record) keys to file filename.

-t filename Shows execution trace where filename is output file; if no filename is
specified, trace goes to stdout.

-p Allows information to be passed to the application on the command line.
You must put the switch at the end of the command followed by all the
parameters (everything following this option is assumed to be a
parameter). This example passes the string myname into the myapp
application:

trimrun myapp -p myname

Output Buffer
When a report is run, output is written to a buffer that represents the page size originally
defined in the CHOOSE REPORT window (generally 66 lines by 80 characters). The buffer,
a virtual page, is copied to the output file whenever a paginate() function call is made
with the break option. For example:

paginate(break);

You can write to the virtual page until a page break is performed. A field can move up
(G.LINENUMBER--) and down the page (G.LINENUMBER++).

When a “field =” is performed, the value is written to the current X, Y (G.LINENUMBER,
G.PAGEOFFSET) position, overwriting whatever is there.

The pset() function call does not overwrite, but inserts the text at the position at which
it is called.

When a pagebreak occurs (via paginate(break);) the output buffer is written to the
output file.

The copying process starts from the top of the output buffer (G.LINENUMBER = 0,
G.PAGEOFFSET =0); then proceeds to the right and down, after checking to see if
pset() placed a string at the current position. If pset() placed a string, that string is
copied to the output buffer. Then, it copies the character at the current position and
moves to the next character.
 51

Chapter 5 Running Your Report Parameters
Output Files
The output buffer is written to the output file whenever a page break is performed. The
buffer is written to the last output file opened with an open() or append() function
call; when a second open() or append() is called, it closes the first. If a file is passed to
either function, the file is opened and the output buffer is written to it. For example,

{
open (“tst.out”);
…

If an open() function is called in an empty string, the report writes to the standard
output device (terminal screen). For example:

{
char file-name[10];
file-name = “ “;
open (file-name);
…

The report can contain only an open() function call with no parameters:

{
open();
…

Then, if a name is passed to a report on the command line, all output is written to the file
outfile.OUT:

trimrun report-name userid/password outfile.OUT

If no name is passed to the report on the command line, the report is opened and the
output written to a file using the same name as the report with an .OUT extension. For
the previous example, if outfile.OUT is not given, all output is written to the file
report.name.OUT. If the output file specified is null, then the data is written to the screen.

When running a report from within TRIMreport, the open()and pset() function calls
are ignored.

Two other functions, log() and list_file() can write to a file. Read the TRIMpl
Function Reference for details on each function.

Parameters
When a report is run, parameters can be passed to it either from a command line or from
another report or application design using call().

Generally, the parameters serve to qualify the SELECT statements in report blocks. For
example, a date can be passed to a report that prints only events occurring on that date.

Passing a large number of parameters can be clumsy when using a construct, such as
variable=parm[32]; because of the exact ordering it necessitates. Also, referencing a
parm[n] that has not been passed generates an error.
 52

Chapter 5 Running Your Report Parameters
An easier way to pass a large number of parameters is by using a list variable. In the
following example a list variable is created with two columns;

ID_KEY VALUE

RPTDAT 07-04-66

CLASS 88

SECURITY 1

REPORT_NAME REUNION.REPORT.LIS

The list is loaded with rows that contain an ID_KEY and a VALUE.

When the report is called, the list of variables is passed in. The report uses the
extract() function to retrieve the values from the list. The following is an example of
the main trigger of such a report:

{
date rptdat; /* declare variables */
int class; /* to receive values */
int security; /* from passed in list */
char report_name[32];
if (count(parm)) { /* if true, list is passed in */

rptdat = extract(parm[0], “RPTDAT”);
class = extract(parm[0], “CLASS”);
security = extract(parm[0], “SECURITY”);
report_name = extract(parm[0], “REPORT_NAME”);
}

else { /* no parms, so test case */
rptdat = “01-MAY-97”;
class = 0;
security = 1;
report_name = “tst.out”;
}

…

An ID string (RPTDAT, CLASS, and so on) is passed to the extract() function that
uses it to find the correct row in the list. It then returns data from the VALUE column of
the list row. The extract() function can be designed to generate an error or return a
default value.

Also, notice that there is a check to see if any parameters have been passed:

if (count(parm)) …

This switch allows the report to test values if it is run from within TRIMreport or stand-
alone for debugging.
 53

TRIMreport Users Guide

Chapter 6

TRIMreport Screens

The following diagram shows the basic functional interaction between TRIMreport
screens.

The screens are presented in alphabetical order, each screen beginning a new page.
TRIMreport Users Guide 54

Chapter 6 TRIMreport Screens
BLOCK COMMENTS
Navigation: CHOOSE REPORT > CHOOSE REPORTBLOCK > COMMENT

Use the work area to enter comments about the current report block or the main report
node. Use [PgUp/PgDn] and arrow keys to scroll text.

The report and reportblock must already be created.

Actions

FILE Store comments in an operating system file.

LOAD Load comments from an operating system file. Text lines are inserted before
the line at the top of the screen.

RESET Erase all text lines.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor defined by
EDITOR environment variable.
TRIMreport Users Guide 55

Chapter 6 TRIMreport Screens
CHOOSE REPORT
Navigation: AT START

Use this dialog (displayed on the starting screen) to enter general information for the
report and execute global actions.

Fields

Name Report name. This can be any combination of alphanumeric characters.
TRIMreport uses the name as the default file name if the report is filed.

Creator Identifier of the person creating the report.

Date Automatically filled with current date.

Fixed Header
Rows

Number of text rows in header. The number of rows specified are for the
printed report.

Fixed Footer
Rows

 Number of text rows in footer. The number of rows specified are for the
printed report.

Actions

CREATE Create the main tree node with the dialog information and displays the
CHOOSE REPORTBLOCK dialog.

MODIFY Display the CHOOSE REPORTBLOCK dialog.

VALIDATE Validate the report definition. When an error is detected in a trigger
during validation, the DEFINE TRIGGER screen is displayed with the
cursor positioned at the error.

RUN Execute the current report design

FILE File or discard the current report tree.

LOAD Load previously saved report files.
TRIMreport Users Guide 56

Chapter 6 TRIMreport Screens
Function Keys

F2 CONNECT Connect to the database.

F3 END Exit from DVreport.

TRIGGER Create a report trigger; display the DEFINE TRIGGER screen.

PROFILE Modify report profile items such as default editor, default number and
data formats.

SQL Define and execute SQL commands except SELECT statements.

SYSTEM Define and execute system commands.

COMMENT Enter comment text for the report design.

RESIZE Enter new values for page length and width.
TRIMreport Users Guide 57

Chapter 6 TRIMreport Screens
CHOOSE REPORTBLOCK
Navigation: CHOOSE REPORT > CREATE | MODIFY

Use this dialog to manage the blocks that make up a report. Each report block must have
a unique name entered in the Name field.

Field

Name Name of the report block to create or modify.

Actions

CREATE Create the report block using the given name. Display the screen painter
main screen.

MODIFY Modify the report block identified by Name. Display the screen painter
main screen.

FILE File the report block including its child and sibling report blocks.

LOAD Load a previously filed report block at this point in the design. The name
of the report block must not conflict with an existing name. DVreport
attempts to resize the subtree to match the current page size.

DROP Delete the report block and the underlying subtree, if any.

LIST Display a list of all available report blocks.

BREAK Display the DEFINE BREAK dialog.

PAGETEXT Display the DEFINE PAGETEXT dialog.

CHILD Replace current report block with its child report block.

PARENT Replace current report block with its parent report block.

PREVIOUS Replace the current report block with the previous (left sibling) report
block.
TRIMreport Users Guide 58

Chapter 6 TRIMreport Screens
Function Key

F3 END Return to the CHOOSE REPORT dialog.

NEXT Replace the current report block with the next (right sibling) report block.

SUMDFLT Create the default summation fields in the report block footer.

SUMDFLT Display the CHOOSE TRIGGER dialog.

COMMENT Display the BLOCK COMMENTS dialog.
TRIMreport Users Guide 59

Chapter 6 TRIMreport Screens
CHOOSE TRIGGER
Navigation: CHOOSE REPORT > CHOOSE REPORTBLOCK > CREATE | MODIFY >

TRIGGER

Use this screen to create a new trigger, or modify or delete an existing trigger. Triggers
are automatically defined for each:

• Report (CHOOSE REPORT)

• Report block (DEFINE REPORT BLOCK)

• Page text (DEFINE PAGETEXT)

• Report block break (DEFINE BREAK)

• Field (DEFINE FIELD)

You can define additional triggers (CHOOSE REPORTBLOCK) that are accessible to all
other triggers in the report.

Predefined Triggers
The following table shows the triggers and report elements for which they are valid.

Valid For Trigger Description

Report Blocks

and Report

Block Breaks

PRE-BLOCK Execute once before anything else in the report
block.

POST-BLOCK Execute once after all else in the report block.

POST-HEADER Execute once after the report block header is
written.

PRE-FOOTER Execute once before the footer is written.

Report Blocks PRE-FETCH Execute before data is retrieved.

POST-FETCH Execute after each data retrieval.
TRIMreport Users Guide 60

Chapter 6 TRIMreport Screens
Field

NAME Name of the trigger.

Actions

CREATE Create the user-defined trigger identified in the Name field. Display
the DEFINE TRIGGER screen.

MODIFY Display the DEFINE TRIGGER screen.

DROP Delete the current trigger identified in the Name field.

PREVIOUS Replace the current trigger with the previous trigger.

NEXT Replace the current trigger with the next trigger.

LIST List the currently defined triggers.

Function Key

F3 END Return to the previous screen.

CHILD Execute once before the PRE-FOOTER trigger.

Fields FIELD Execute once each time the field is accessed in
sequence.

Page text PAGINATE Execute once each time a page break is
required.

The Report MAIN Execute once before anything else is done in
the report.

Valid For Trigger Description
TRIMreport Users Guide 61

Chapter 6 TRIMreport Screens
DEFINE BREAK
Navigation: CHOOSE REPORT > CHOOSE REPORTBLOCK > BREAK

Use this dialog to define one or more break levels for the current report block. You must
choose Yes or No in the Duplicate field execute a CREATE action before using DEFINE
BREAK.

Fields

Name Name of the break being defined.

Duplicate Y to duplicate break fields; N to not duplicate break fields.

Fields List of break fields.

Actions

CREATE Create a report block break; open the Name and Fields fields for entry.

MODIFY Display the screen painter main screen.

DROP Delete the report block break.

TRIGGER Display the CHOOSE TRIGGER dialog.

PREVIOUS Replace the current report block break with its parent report block
break.

NEXT Replace the current report block break with its child report block break.

SUMDFLT Create the default summation fields in the report block break footer.

Function Key

F3 END Return to the CHOOSE REPORTBLOCK dialog
TRIMreport Users Guide 62

Chapter 6 TRIMreport Screens
DEFINE FIELD
Navigation: CHOOSE REPORTBLOCK > MODIFY > F4 > F2

Use this screen to define a field in the header, detail, or footer area of a report block, or
the header or footer of a report block break or page text.

Fields

Seq Sequence number of the field

Name Name of the field; any combination of up to 30 characters.

Mask Formatting mask for the field. (Consult the appendixes for more
information.)

Actions

TRIGGER Display the DEFINE TRIGGER dialog.

DROP Delete field from the current report block.

LIST List the currently existing fields; field in list can be selected for definition.
LIST is not available for a new field.

PREVIOUS Replace current field with previous field.

NEXT Replace current field with previous field.

Function Key

F3 END Return to the previous screen.
TRIMreport Users Guide 63

Chapter 6 TRIMreport Screens
DEFINE PAGETEXT
Navigation: CHOOSE REPORT > CHOOSE REPORTBLOCK > PAGETEXT

Use this dialog to define the page header, footer, and trigger for the current report block
and its child report blocks. PAGETEXT is inherited from the parent report block. If the
parent PAGETEXT is modified, each child PAGETEXT automatically receives the
modifications except when the child PAGETEXT was individually defined.

Field

Name Name of the PAGETEXT

Actions

MODIFY Return to the previous screen.

TRIGGER Edit the page header and footer text. Display the screen painter main
screen.

DROP Delete the page header, footer, and trigger entries.

Function Key

F3 END Return to the CHOOSE REPORTBLOCK dialog.
TRIMreport Users Guide 64

Chapter 6 TRIMreport Screens
DEFINE REPORTBLOCK
Navigation: CHOOSE REPORT > CHOOSE REPORTBLOCK > CREATE|MODIFY > F5

Use this dialog to edit the code for the report block trigger, the SELECT command, or the
WHERE clause.

Field

Reportblock Name of the report block.

Actions

TRIGGER Display the CHOOSE TRIGGER screen.

SELECT Display the DEFINE SELECT screen.

WHERE Display the DEFINE WHERE screen.

Function Key

F3 END Return to the CHOOSE REPORTBLOCK dialog.
TRIMreport Users Guide 65

Chapter 6 TRIMreport Screens
DEFINE SELECT
Navigation: CHOOSE REPORTBLOCK > CREATE | MODIFY > F5 > SELECT

Use this screen to edit the SELECT statement for the report. You can scroll text using the
[PgUp/PgDn] and arrow keys.

Field

Reportblock Name of the current report block.

Actions

CREATE Perform SQL DESCRIBE with the SELECT statement; no fields are
created.

DEF_HORZ Perform SQL DESCRIBE with the SELECT statement; default fields for a
horizontal report are created.

DEF_VERT Perform SQL DESCRIBE with the SELECT statement; default fields for a
vertical report are created.

DEF_VER2 Perform SQL DESCRIBE with the SELECT statement; default fields are
created and aligned for a vertical report.

VALIDATE Validate the SQL statement syntax and binding.

FILE Store entire SELECT statement in an operating system file.

LOAD Load SELECT statement from an operating system file. The statement is
inserted before the line at the top of the screen.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.
TRIMreport Users Guide 66

Chapter 6 TRIMreport Screens
F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor definied by the EDITOR
environment variable.
TRIMreport Users Guide 67

Chapter 6 TRIMreport Screens
DEFINE TRIGGER
Navigation: CHOOSE REPORTBLOCK > CREATE | MODIFY > F5 > TRIGGER >

CREATE | MODIFY

Use this screen to edit the code for all triggers. Use the [PgUp/PgDn] and arrow keys to
scroll text.

Field

Name Name of the trigger to define.

Actions

COPY Copy trigger code from an archive library. Code is inserted before the
line at the top of the screen.

FILE Store entire trigger code in an operating system file.

LOAD Load trigger code from an operating system file. Code is inserted
before the line at the top of the screen.

RESET Erase all trigger code.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor definied by the EDITOR
environment variable.
TRIMreport Users Guide 68

Chapter 6 TRIMreport Screens
DEFINE WHERE
Navigation: CHOOSE REPORTBLOCK > CREATE | MODIFY > F5 > WHERE

Use this screen to edit the optional WHERE clause for the current report block SELECT
statement. If the condition in the WHERE clause is true for a row of data, the current row
is included; if false, the row is not included and the next row is evaluated.

Scroll text using the [PgUp/PgDn] and arrow keys.

Field

Reportblock Name of the current report block.

Actions

FILE Store the WHERE clause in an operating system file.

LOAD Load the WHERE clause from an operating system file. The WHERE
clause is inserted before the line at the top of the screen.

RESET Delete all lines.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor definied by the EDITOR
environment variable.
TRIMreport Users Guide 69

Chapter 6 TRIMreport Screens
Screen Painter
The screen painter defines the physical layout of the report. You can edit header, detail,
and footer areas as well as manipulate the fields in all areas. Only the areas associated
with the current report block can be edited. The current report block name is displayed
in the status line; the row and column of the cursor’s position are also displayed.

Main Screen
Use this screen to display the current report design. Select the area to edit by pressing
the appropriate function key. The main screen can be scrolled using the [PgUp/PgDn],
[F9] (Right), [F10] (Left), and arrow keys. The function keys available at this point vary
depending on the dialog from which the screen painter was accessed.

Function Keys (from MODIFY PAGETEXT or DEFINE BREAK)

F1 HEADER Edit the header text area.

F2 FOOTER Edit the footer text area.

F3 END Return to previous dialog.

Function Keys (from CHOOSE REPORTBLOCK)

F1 HEADER Edit the header text area.

F2 FOOTER Edit the footer text area.

F3 END Return to the CHOOSE REPORTBLOCK dialog.

F4 DETAIL Edit the detail text area.

F5 BLOCK Display the DEFINE REPORT BLOCK dialog.
TRIMreport Users Guide 70

Chapter 6 TRIMreport Screens
Edit Screen
Use this screen to manipulate the fields in the chosen area (header, footer, detail). Use
Tab and arrow keys to move the cursor between fields.

From the main screen select header, footer, or detail. The working area’s appearance
appears the same but the actions at the bottom changes to:

Function Keys

F1 TEXT Display the screen painter text edit screen.

F2 FIELD If the cursor is within a defined field, display the DEFINE FIELD
dialog. If the cursor is not within a defined field, display the CHOOSE
FIELD dialog for a new field.

F3 END Return to the screen painter main screen.

F4 CUT Cut the field in which the cursor is located.

F5 PASTE Retrieve a field that was cut or marked and places it at the current
cursor location. Multiple fields may be cut and pasted in last-in-first-
out order. For example, cut field-A, cut field-B, cut field-C, paste field-C,
paste field-B, paste field-A.

F6SHIFTL All fields to the left of the cursor are moved one space left each time the
function key is pressed.

F7SHIFTR All fields to the right of the cursor are moved one space right each time
the function key is pressed.
TRIMreport Users Guide 71

Chapter 6 TRIMreport Screens
Edit Text Screen
Use this screen to modify the text of the previously chosen area: header, footer, detail.
Use Tab and arrow keys to move the cursor between fields.

From the edit screen, choose F1, text and the editable area becomes highlighted and the
actions change:

Function Keys

F1 DUP Duplicate the current line.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the current line.

F6 CENTER Center the line in which the cursor is located.

F7 FILE Save the entire text to an operating system file.

F8 LOAD Load text from an operating system file; the text is placed above the
cursor.
TRIMreport Users Guide 72

Chapter 6 TRIMreport Screens
SQL COMMAND
Navigation: CHOOSE REPORT > SQL

Use the displayed work area for entering SQL commands. Scroll text using the [PgUp/
PgDn] and arrow keys.

Actions

EXECUTE Execute the SQL command(s).

FILE Store SQL command(s) in an operating system file.

LOAD Load SQL command(s) from an operating system file. Commands are
inserted before the line at the top of the screen.

RESET Erase all commands.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor definied by the EDITOR
environment variable.
TRIMreport Users Guide 73

Chapter 6 TRIMreport Screens
SYSTEM COMMAND
Navigation: CHOOSE REPORT > SYSTEM

Use this screen to execute system commands from within DVreport . You can enter
multiple commands, one command per line. Scroll text with [PgUp/PgDn] and arrow
keys.

Actions

EXECUTE Execute the command(s).

FILE Store command(s) in an operating system file.

LOAD Load system command(s) from an operating system file. Commands
are inserted before the line at the top of the screen.

RESET Erase all commands.

Function Keys

F1 DUP Duplicate the line under the cursor.

F2 APPEND Append a new line below the cursor.

F3 END Return to the previous screen.

F4 INSERT Insert a new line above the cursor.

F5 DELETE Delete the line under the cursor.

F6 OOPS Insert the previously deleted line above the cursor.

F7 EDITOR Escape to the operating system editor definied by the EDITOR
environment variable.
TRIMreport Users Guide 74

TRIMreport Users Guide

Appendix A

Format Masks
TRIMreport User Guide

Format masks let you specify how you want string data to appear. These format mask are
based loosely on Oracle’s format masks.

char
The char datatype has only one format mask: An where n specifies the width.

numeric
Numeric data has a wide selection of formatting options. You can specify the width of a
field or resulting conversions by the length of the mask.

Character Description

% Percent sign at right of number.

$ Dollar sign at left of number.

B Display zero as blank.

0 Display leading zeros.

9 A digit position.

other Delimiting character (not leading)
TRIMreport Users Guide 75

Appendix datetime
Formatting Examples

Value Mask String Result

1958 9,999.99 1,958.00

1958 099999 001958

56.789 $999.99 $56.79

0 999.99 0.00

0 099.99 000.00

0 B99.99

4083692300 999/999-9999 408/369-2300

datetime
Datetime data has a variety of formatting options. You specify the width of the field or
resulting conversions by the length of the mask.

Sequence Description Use (I/O)

YYYY Four-digit year I/O

YY Two-digit year I/O

RR Two-digit year in another century. O

MM Two-digit month of year (01 – 12) I/O

MON Three-character month (all upper case) I/O

mon Three-character month (all lower case) I/O

Mon Three-character month (first letter upper case) I/O

MONTH Fully named month (all upper case) I/O

month Fully named month (all lower case) I/O

Month Fully named month (mixed case) I/O

DDD Three digit day of year (001 – 366) I/O

DD Two digit day of month (01 – 31) I/O

D Single-digit day of week (1 – 7) O

DY Three character day (all uppercase) I/O

dy Three character day (all lower case) I/O

Dy Three-character day (1st letter upper case) I/O

DAY Fully-named day (all upper case) I/O

day Fully-named day (all lower case) I/O
TRIMreport User Guide 76

Appendix User-defined
Appending th (case insensitive) to any uppercase digit mask appends ST, ND, RD, or TH
depending on the last digit. For lowercase digit masks the lowercase version is
appended.

Put embedding characters that are valid masks inside double quotes (").

The default mask is DD-MON-YY.

Formatting Examples

Value Mask String Result

Feb 6, 1958 DD/MM/YYYY 06/02/1958

Feb 6, 1958 qth quarter of YY 1st quarter of 58

Nov 1, 1995 20:48:46 HH12:MI on Day 08:48 on
Wednesday

User-defined
You can use a special format mask when built-in format masks don’t meet your need. For
example, when the database represents YES/NO as 1 and 0, none of the built-in masks
adequately translate the values.

A user-defined format mask looks like

Unnfun [(parm[2] [, …, parm[n]])]

where

Day Fully-named day (mixed case) I/O

HH12 Two-digit hour (00 – 11) I/O

HH,HH24 Two-digit hour (00 – 23) I/O

MI Two-digit minutes (00 – 59) I/O

SS Two-digit seconds (00 – 59) I/O

SSSS Seconds past midnight (0000 – 86399) I/O

J Julian day I/O

Q Single-digit quarter of year (0 – 4) O

W Single-digit week of month (1 – 4) O

WW Two-digit week of year (01 – 52) I/O

other Delimiting character I/O

nn represents the width of the field in characters. The screen painter
represents this mask with the character “u,” as in UUUU.

Sequence Description Use (I/O)
TRIMreport User Guide 77

Appendix User-defined
The user-defined trigger is called every time the system reads or rights to the _D variable
associated with the field variable and must return the following;

• output — any data.

• input (query) — any data.

• input— data with the same datatype as field.

Examples
A Y[es]/N[o] field where 1 is yes and 0 is no. Based on language used, the corresponding
letters should be used, but the actual values are either 0 or 1.

Format mask:
‘U1yes_no’.

Function/Trigger yes_no:
if (parm[0]) /* input ? */

return(decode(G.lan,“SWE”,decode(parm[1],”J”,1,”N”0,-1),
 “ENG”,decode(parm[1],”Y”,1,”N”,0,-1));

else /* output *
return(decode(G.lan,”SWE”,decode(parm[1]0,”N”,”J”),

 “ENG”,decode(parm[1]0,”N”,”Y”),”?”));

func is the user-defined trigger responsible for the input and output from
and to the field. func() has two implicit parameters:
• parm[0] false on output, true on input
• parm[1] output: the actual field; input: the string entered.

parm[2, 3, …, n] represents the optional parameters you can pass with the user-defined
trigger.
TRIMreport User Guide 78

Index

TRIMreport Users Guide
Index
Symbols
& 48

in textareas 11
&p.deptnumb 48
/ 11

A
actions

CREATE 33
DEF_HORZ 34
DEF_VERT 19
DEF_VERT2 19
MODIFY 36

ampersand
in textareas 11

applications
calling from report 44

B
block detail

report block 9
SELECT control 9
WHERE control 9

break footer
SUM fields 15

break levels
defining 62
multiple 14

break sub-blocks 14
break trigger 13
breaks

creating 41
SUMDFLT 15

C
call() 44
case-sensitivity

Sybase databases 34
changing

format masks 37
child blocks

creating 48
CHOOSE REPORT 6, 13, 35
CHOOSE REPORT dialog 32
CHOOSE REPORTBLOCK 8

SUMDFLT 41
user triggers 13

columns
removing 37

commenting
current report block 55
main report note 55

control sections
defined 7

controls
SELECT 9
WHERE 10

count() 13
CREATE 9, 33
creating

break levels 62
breaks 41

child blocks 48
groups 41
new fields 48
report blocks 58
summation 48
summations 41
totals 41
triggers 60

D
database

conserving resources 18
DATE 49
date

variable 39
DEF_HORZ 9, 19, 34
DEF_VER2 9
DEF_VERT 9, 19
DEF_VERT2 19
defaults 4

summations 41
DEFINE BREAK 13, 14

SUMDFLT 41
DEFINE FIELD 13, 37, 48
DEFINE PAGETEXT 13
DEFINE REPORTBLOCK 13
defining

break levels 62
report fields 63
report text 64

deleting
triggers 60

design methods 17
list-driven 17
select-driven 17
trigger-driven 17

designing
reports (see layout) 70

detail area
column names 19
defined 7

dialogs
CHOOSE REPORT 32, 35
DEFINE FIELD 37

displaying
function results 11
time and date 11

distribution
workload 17

E
editing

report areas 71
report text 72
SELECT statements 66
trigger code 68

embedded variables
see variables

embedding functions 11
entering SQL commands 73
error

truncate text 47

errors
function calls 13
internal mismatch 10
non-SELECT statements 9
passing parameters 13

escape codes
for printing 43

executing
global actions 56
system commands 74

execution sequence
report blocks 7

execution summary
report blocks 14

F
field structures 9
field trigger 13
fields 12

creating 48
footer

defined 7
defining report 63
pagetext 8

footer defining report 63
form feed

suppressing or changing 7
format masks

changing 37
moving 37

formatting
pages 6

forward slash 11
functions

call() 44
embedding 11
identifying 11
paginate() 7
pset() 43
return() 44
using 11

G
G. LINENUMBER 8
G.LINENUMBER 43, 46
G.PAGEOFFSET 43, 46
G.TIME 11, 39
global actions

executing 56
groups

creating 41

H
headers

defined 7
defining report 63
pagetext 8
removing 37

how to
call other reports/apps 44
change format masks 37
create a report 32
TRIMreport Users Guide 79

Index
modify reports 36
move format masks 37
save a report format 36
save escape codes for printing

43
two-block report 47
use variables 48

I
inheritance

pagetext 7
report blocks 64

INSERT, DELETE 9

L
layout

reports 70
leftover text 47
LIST 49
list-driven design 17

M
main report note

commenting 55
main trigger 13
managing

report blocks 58
triggers 60

masks
datetime 49

MODIFY 36
modifying 41

page text 49
report 36
report block triggers 65
report blocks 58, 64
totals 41
triggers 60

moving
format masks 37

N
naming

report blocks 58
NEWFIELD 48
numeric fields

breaks 15

O
Oracle

tutorial directions 32
using 38

organization
report blocks 5

output buffer 6

P
page

formatting 6
PAGE LENGTH

max values 6
page size

resizing 39
page width

max values 6
with Oracle 32

pagetext 8, 13, 49
inheriting 7

PAGETEXT action
see also pagetext

pagetext settings
modifying 8

paginate() 7
parameters

errors 13
passing 13

parent-child 7
report blocks 5

POST-BLOCK trigger 15
execution summary 14

POST-FETCH trigger
execution summary 14

POST-HEADER trigger 15
execution summary 14

PRE-BLOCK trigger 15
execution summary 14

PRE-FOOTER
execution summary 14
trigger 15

printer
controlling 43

printing
escape codes 43
reports 43

pset() 43

R
removing

columns 37
headers 37

report
creating 32

report block 13
defined 7
organization 5

report blocks
block detail 9
commenting 55
execution sequence 7
execution summary 14
inheritance 64
managing 58
organization 7
parent-child 7
siblings 7

report design
requirements 17

report text
editing 72

reports
calling others 44
editing areas 71
layout 70
printing 43
screen painter 70

RESIZE
action 39

resizing 47
page size 39

return() 44
running

reports 43

S
saving

report format 36
screen painter 70
SELECT

editing 66
SELECT control 9
SELECT statement

execution summary 14
SELECTcontrol

block detail 9
select-driven design 17
semicolons 9, 10
siblings 7

report blocks 5
specifying

multiple break levels 14
SQL

entering commands 73
sub-blocks

break 14
SUM fields

break footer 15
SUMDFLT 41, 48

CHOOSE REPORTBLOCK 41
DEFINE BREAK 41
in breaks 15

summations
creating 41
using 48

Sybase
case sensitivity 34

SYSDATE 49
system commands

executing 74

T
terminating SQL 9
time

variable 39
totals 41

creating 41
trigger controls

subblock 15
trigger-driven design 17
triggers

break 13
editing code 68
field 12, 13
main 13
managing 60
modifying report block 65
page text 13
pagetext 8
TRIMreport Users Guide 80

Index
POST-BLOCK 15
PRE-BLOCK 15
predefined 60
PRE-FOOTER 15
report block 13

trim.cc 43
truncate text

error message 47

U
UPDATE 9
user triggers 13

V
variables 11

assigning in WHERE control
10

builtin 11
G.LINENUMBER 43
G.PAGEOFFSET 43
G.TIME 39
identifying 11
replacement 48
WHERE control 10

W
WHERE control 10

assigning variables 10
block detail 9
declaring variables 10
execution summary 14
using semicolons 10

window
see also dialogs
TRIMreport Users Guide 81

	TRIMreport
	Reportwriter
	Trademarks
	Copyright
	TRIMreport Users Guide
	TRIMreport Users Guide
	Preface

	Database Access
	Application and Report Development
	Reaching Legacy Data
	Conventions
	Support
	TRIMreport Users Guide
	Chapter 1
	Introduction

	Defaults
	Screen Layout
	Actions and Function Keys
	Screens
	TRIMreport Users Guide
	Chapter 2
	Designer Elements

	Page Formatting
	Report Blocks
	Block organization

	Pagetext
	Turning the Page

	Block Detail
	SELECT Control
	Using SELECT

	WHERE Control
	Trigger Control

	Showing Other Information
	Variables
	Functions

	Fields
	Triggers
	MAIN Trigger
	User Triggers

	Block Execution Summary
	1. Execute PRE-BLOCK trigger.
	2. Write header text.
	3. Execute header fields.
	4. Execute POST-HEADER trigger.
	5. If SELECT statement returns a row:
	a. Evaluate WHERE control, if defined. If true,
	i. Execute PRE-FETCH trigger.

	ii. Execute POST-FETCH trigger. If there is a break and the last break field is not the same as the current,
	iii. Write detail text/execute detail fields.
	iv. Execute CHILD trigger.
	a. Return to SELECT.

	5. Execute PRE-FOOTER trigger.
	a. Write footer text.
	a. Execute footer fields.

	2. Execute POST-BLOCK trigger.
	Break Sub-Block
	Break Sub-Block Header & Footer
	Break Control Triggers
	Special Break Techniques
	TRIMreport Users Guide
	Chapter 3
	Design Considerations

	Effective Designs
	Report Design Methods
	Distributing Work

	SELECT-driven Method
	Default Behavior
	Examples
	Report Design
	Formatted Report

	List-Driven Method
	Examples
	Report Design
	Formatted Report

	Trigger-Driven Method
	Examples
	Report Design
	Formatted Report
	TRIMreport Users Guide
	Chapter 4
	Designing a Report

	Step by Step
	1. Start TRIMreport and connect to a database following the instructions for your operating system and database in the Connect Guide.
	Creating a basic report
	1. Type “MY_REPORT”, press [Tab]. (Note: Must use an underscore.)
	2. Type “MYSELF” (or your name, if you prefer) and press [Tab].
	3. Type “66”, press [Tab], type “80”if you’re not using an Oracle database, “140” if you are.
	4. [Tab] to the CREATE action and press [Enter].
	5. Type “MY_REPORT” and [Tab] to the CREATE action and press [Enter].

	Writing the Block Control
	1. Press [F5] to display the DEFINE REPORTBLOCK dialog box.
	2. [Tab] to the SELECT action and press [Enter].
	3. In the DEFINE SELECT dialog that appears on your screen, make sure that your cursor is on the line **** End of text ****.
	4. Press [F4] to open a line for typing.
	5. Type “select * from staff order by dept, job”
	6. [Tab] to DEF_HORZ and press [Enter].
	7. After you see the status “OK DEF_HORZ performed” at the bottom of the window, press [F3] twice to see the default report definitions.

	Running the report
	1. Press [F3] twice to go to the CHOOSE REPORT dialog.
	2. [Tab] to the RUN action and press [Enter].

	Saving a Report’s Format
	1. Press [F3] to return to the CHOOSE REPORT dialog box.
	2. [Tab] to the FILE action and press [Enter].
	3. Accept the default name and press [Enter] to file (save) the design in your local directory.

	Modifying the Report
	1. On the CHOOSE REPORT dialog, [Tab] to the MODIFY action and press [Enter].
	2. On the CHOOSE REPORTBLOCK dialog, [Tab] to the MODIFY action, and press [Enter].
	Remove Column & Header
	1. Press [F4] to enter the detail area.
	2. Put your cursor in the first series of 9s and press [F4] to cut the detail.
	3. To remove the header text, press [F3] to leave detail, [F1] to enter Header and [F1] again to edit text.
	4. Type over the line and the label “ID” putting blank spaces in with the spacebar.

	Adjust Format Mask
	1. Press [F3] to leave the header area, [F4] to edit detail, and [Tab] to the 999 under DEPT.
	2. Press [F2] for the DEFINE FIELD dialog.
	3. [Tab] to the Mask field and type 99. Press the spacebar to remove the rest of the 9s.
	4. Press [F3] to return to the detail area.

	Move Columns & Headers
	1. Press [F4] to cut the detail, move the cursor to the right edge of your screen, and press [F5] to paste the detail in its new location.
	2. Move the detail for “JOB” the same way. [Tab] to the Cs under or to the left of “JO” (JOB may be truncated since heading info...
	3. Now put new labels in the header. Press [F3] to leave the detail area and [F1] twice to enter the header text area.
	4. Type DEPT and JOB with a row of dashes over the detail items. While we’re modifying the header text, retype NAME about five spaces away from the end of the JOB detail, and put a dashed line under it, as illustrated below.
	5. To move the detail for NAME, return to the detail area ([F3], [F3], [F4]) and shift the column to the left (put your cursor in the new beginning location and press [F6]).
	6. Move the cursor and continue to shift the new column left [F6] until it’s about 5 spaces away from the end of the NAME column.

	Change Masks
	1. Put your cursor on the first 9 and press [F2].
	2. [Tab] to the Mask field, type 999 and press the spacebar to erase the rest of the numbers. Press[F3] when you’re finished.
	3. Press [F3], [F1], and [F1] to go to the header text area. Type “SENIORITY” over the 999 you just edited and center it over the numbers.
	4. Press [F3] twice, [F4], [Tab] to the detail, and press [F2] to examine the next detail column.

	Resize
	1. Press [F3] until you get to the CHOOSE REPORT dialog.
	2. [Tab] to the width value and change it to “80”.
	3. [Tab] to the RESIZE action and press [Enter].

	Refine the Report
	1. Press [F1] to work with text.
	2. [Tab] to the SALARY field and add a dollar sign ($), adjusting the detail column with [F6] or [F7] as appropriate.
	3. Move your cursor to the COMMISSION detail and add another $.
	4. Add a report title in the header. ([F3], [F3], [F1], [F1]).
	5. Make sure the cursor in the topmost position and press [F4] two or three times to create a few blank lines.
	6. Type “DEMO COMPANY” and press [F6] to center the text.
	7. Move the cursor down a line.
	8. Type “Confidential Staff Report as of &g.time” and press [F6] to center.

	Run the Report
	1. Press [F3] until you get to the CHOOSE REPORT dialog.
	2. [Tab] to the RUN action, and press [Enter].

	Grouping Information (Creating Breaks and Summations)
	1. Press [F3], [Tab] to the MODIFY action, and press [Enter].
	2. In the CHOOSE REPORTBLOCK window, [Tab] to the BREAK action and press [Enter].
	3. Type “N” in the Duplicate field.
	4. [Tab] to the CREATE action and press [Enter].
	5. In the Fields field type “DEPT”
	6. [Tab] to the SUMDFLT action and press [Enter] to create a total for each numeric column.

	Modify Totals
	1. Press [F3] to return to the DEFINE BREAK dialog and [Tab] to MODIFY action. Press [Enter].
	2. Press [F2].
	3. Put the cursor in the footer text under DEPT, 99, and press [F4] to remove the field.
	4. Repeat the cut for SENIORITY summation.
	5. Press [F1] and use the spacebar to delete the “==” text in the DEPT column and add $ signs in the SALARY and COMMISSION columns.
	6. Press [F3] four times to get to the CHOOSE REPORTBLOCK dialog for MY_REPORT.
	7. [Tab] to the SUMDFLT action and press [Enter] to ask for a total for the entire report block.
	8. Clean up the report design, adding $s where appropriate and cutting the summary fields for DEPT and SENIORITY.
	9. Return to CHOOSE REPORT dialog and select the RUN action.

	Printing Your Report
	Controlling the Printer
	Saving Escape Codes

	Advanced Procedures
	Calling Other Reports or Applications
	Making a Report Database-Independent
	1. Create a field in the detail area and create a break on that field. Use the following SELECT to retrieve the data from any SQL database:
	2. Create a character field, BB, in the detail area with a mask of “A2” and a trigger:
	3. Create a variable, BB, in the PRE-BLOCK trigger of the window:
	4. Create a WHERE control that contains the following:
	5. Create a SET_BB_FUNCTION that contains the following:
	6. Create a BREAK on the BB field.
	7. Change the value of BB before the break check occurs by using the WHERE control. The WHERE control is invoked after each row is returned but before anything else happens, including the break check.

	Specifying a Single Pagetext Header/Footer
	Fields to Center Headings
	Transforming Values
	Multiple Columns from One Field

	Second Tutorial: Two-Block Report
	Create Report with One Block
	1. CHOOSE REPORT dialog, complete the Name, Creator, page length, and width fields. > CREATE.
	2. CHOOSE REPORTBLOCK dialog, complete Name: ORG.
	3. [Tab] to CREATE [Tab]> SELECT.
	4. DEFINE SELECT> [F4], type “select * from org”> DEF_HORZ.
	5. [F3] > [F3] to design window.
	6. Clean up the report beginning with Detail: [F4], [Tab], [F2].
	7. DEPTNUMB only requires 2 digits, MANAGER 3 digits.
	8. After the 5th Field, [F3] to return to design window and move the columns. ([F6]).
	9. Adjust the header text over each column ([F1], [F1]). Don’t forget to scroll to the right for “leftover” text or you may get an error message if you try to resize your report.

	Create Second Block
	1. CHOOSE REPORTBLOCK > CHILD > Type “STAFF”> CREATE .
	2. [F5] > SELECT > [F4] > Type “select * from staff where dept = &p.deptnumb” > DEF_HORZ.
	3. [F3] > [F3] to see the second block detail in your report. Clean up the appearance the same way you tidied ORG columns and headers.
	4. Indent the STAFF detail under Dept. Name to give the report a visual hierarchy. ([F7])
	5. Clean up the header text ([F1], [F1]).
	6. Fiddle with the header and detail lines until they are pleasing. Add two blank lines in the STAFF header text.
	7. [F3] > [F3] > [F3] > [F3] > FILE > “filename.”
	8. RUN.
	9. To further modify STAFF, from the CHOOSE REPORTBLOCK> LIST and choose STAFF from the list that appears.

	Create Sum Values for Second Block
	1. Select STAFF block. In CHOOSE REPORTBLOCK for Staff, select SUMDFLT.
	2. Remove the summations that don’t make sense, leaving only the Salary and Commission.
	3. Create an explanatory footer: “Total for dept:” and create a field to display the department number.
	4. [F2] > [F1] > Type “Total for dept:” > [F3] > [F2] .
	5. Type “DEPT” > NEWFIELD.
	6. DEFINE FIELD as number, accept right justify, mask of two digits (99).
	7. TRIGGER > [F4] > Type “ field = p.deptnumb;” (TRIMpl code)
	8. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.
	9. Don’t forget to resize the report.

	Add Report Title and Pagenumbering
	1. CHOOSE REPORTBLOCK > PAGETEXT > MODIFY > [F1] > [F1]
	2. Insert 3 lines [F4] x3, then type “Department Report as of” press [F6]
	3. Type “&g.time” press [F6].
	4. [F3] > [F3] > [F2] > [F1] > [F3] > [F1].
	5. Type “Page: &g.pagenumber” > [F6]
	6. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.

	Add Continuation Information
	1. [F3] > MODIFY > LIST > STAFF.
	2. [F3] > PAGETEXT > MODIFY > YES > [F1] > [F1].
	3. Replace existing text with “continued for department &p.deptnumb”. [F6]
	4. [F3] > [F3] > [F3] > [F3] > [F3] > FILE > RUN.

	Changing G.TIME Format
	1. [F3] > MODIFY (ORG) > PAGETEXT > MODIFY > [F1] > [F1].
	2. Delete the text “&.gtime”.
	3. [F3] > [F2] > Type “DATE” in the Name: field > NEWFIELD.
	4. Complete the dialog box as follows: Data type is DATE, accept default justification, Mask is HH:MI:SS DD-MON-YYYY.
	5. TRIGGER > [F4] > Type “field = SYSDATE;”
	6. [F3] > [F3] > [F6] to adjust field location.
	7. [F3] > [F3] > [F3] > [F3] > FILE > RUN.
	TRIMreport Users Guide
	Chapter 5
	Running Your Report

	Running/Printing Reports
	Options
	Output Buffer
	Output Files

	Parameters
	TRIMreport Users Guide
	Chapter 6
	TRIMreport Screens

	BLOCK COMMENTS
	CHOOSE REPORT
	CHOOSE REPORTBLOCK
	CHOOSE TRIGGER
	Predefined Triggers

	DEFINE BREAK
	DEFINE FIELD
	DEFINE PAGETEXT
	DEFINE REPORTBLOCK
	DEFINE SELECT
	DEFINE TRIGGER
	DEFINE WHERE
	Screen Painter
	Main Screen
	Edit Screen
	Edit Text Screen

	SQL COMMAND
	SYSTEM COMMAND
	TRIMreport Users Guide
	Appendix A
	Format Masks

	TRIMreport User Guide
	char
	numeric
	Formatting Examples

	datetime
	Formatting Examples

	User-defined
	Examples
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	TRIMreport Users Guide

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

