
GENESISsql

Users Guide

August 19, 2022

Trifox Inc.
www.trifox.com

Trademarks
TRIMapp, TRImpl, TRIMqmr, TRIMreport, TRIMtools, GENESISsql, DesignVision,
DVapp, DVreport, VORTEX, VORTEXcli, VORTEXc, VORTEXcobol, VORTEXperl,
VORTEXjdbc, VORTEX++, VORTEXJava Edition, LIST Manager, VORTEXodbc,
VORTEXnet, VORTEXclient/server, VORTEXaccelerator, VORTEXreplicator are all
trademarks of Trifox, Inc.

All other brand and product names are trademarks or registered trademarks of their
respective owners.

Copyright
The information contained in this document is subject to change without notice and does
not represent a commitment by Trifox Inc. The software described in this document is
furnished under a license agreement and may be used or copied only in accordance with
the terms of the agreement. No part of this manual or software may be reproduced or
transmitted in any form or by any means, electronic or mechanical (including
photocopying and recording), or transferred to information storage and retrieval systems
without the written permission of Trifox Inc.

Copyright © Trifox Inc. 1986-2022

All rights reserved.

Printed in the U.S.A.
 2

GENESISsql Users Guide

Contents

Preface 1
Organization 1
Revisions 3

1 The Basics
Architecture 6
Process 7
Datasource File 7
Catalog utility 8
Logging 8
Connecting 8

PERL example 8
JAVA example 9
JDBC example 9

Initialization SQL Commands 9

2 Genesis SQL Support
Summaries 11
SQL Identifiers 12
Transaction Management 12
Predicates 12
Constraints 12
SQL Optimization 13

Indexes 13
Boolean operators 14
Joins and Subqueries 15

CREATE INDEX 16
CREATE SYNONYM 17
CREATE TABLE 18
CREATE VIEW 20
DELETE 22
DROP INDEX 24
DROP SYNONYM 25
DROP TABLE 26
DROP VIEW 27
GRANT (Database privileges) 28
GRANT (Object privileges) 29

ALL PRIVILEGES 29
Other Privileges 29
Privileges Cascade 29

INSERT 31
REVOKE (Database privileges) 32
REVOKE (Object privileges) 33
SELECT 34

Keywords & Parameters 34
SELECT list (SELECT statement) 35
FROM clause (SELECT statement) 35
GENESISsql Users Guide i

Contents
Joins 36
Outer Joins 36
WHERE clause (SELECT statement) 37
GROUP BY clause (SELECT statement) 38
HAVING clause (SELECT statement) 38
ORDER BY clause (SELECT statement) 38
Possibly Nondeterministic Queries 39

SET OPTION 40
Keywords & Parameters 40

SET PASSWORD 44
UPDATE 45

3 Built-In Functions
ABS 47
ASCII 47
BITAND 47
BITOR 47
BITXOR 47
CASE 48
CAST 48
CHAR_LENGTH 49
CHR 49
CONCAT 49
CONVERT 49
CURDATE 50
CURDATETIME 50
CURRENT_DATE 50
CURRENT_DATETIME 50
CURRENT_TIME 51
CURRENT_TIMESTAMP 51
CURTIME 51
CURTIMESTAMP 52
DATABASE 52
DAYNAME 52
DECODE 52
GREATEST 52
HOUR 52
IFNULL 52
INSTR 53
LCASE 53
LEAST 53
LEFT 53
LENGTH 53
LOCATE 53
LTRIM 53
NOW 53
NVL 54
POSITION 54
REPLACE 54
REVERSE 54
RIGHT 54
ROUND 54
RTRIM 55
GENESISsql Users Guide ii

Contents
SQRT 55
SUBSTR 55
SUBSTRING 55
SYSDATE 55
TO_CHAR 56
TO_DATE 57
TO_NUMBER 58
TRANSLATE 58
TRUNC 59
UCASE 59
USER 59

4 GENESIS Dictionary
Introduction 60
GENESIS dictionary 60

GENESIS_TABLES 61
GENESIS_COLUMNS 61
GENESIS_INDEXES 61
GENESIS_XCOLUMNS 62
GENESIS_AUTHS 62
GENESIS_DEPENDS 63
GENESIS_FORKEYS 64
GENESIS_USERS 64
GENESIS_VIEWS 64

Drivers by Type 65

5 ADABAS C Driver
Introduction 66
Creating the Dictionary File 66

Unix 67
Windows 67
OpenVMS 67
MVS 67
Unix, Windows, and OpenVMS 68
MVS 69
User table description 75
Unix, Windows, and OpenVMS 78
MVS 78

Customization 79
Date and Timestamp fields 79
Read-only fields 79
Periodic Groups and Multivalue fields 80

6 Synergex SDMS Driver
Introduction 89
Making it Work 89

7 OpenVMS RMS Driver
Introduction 91
Making it Work 91
Multivalue fields 96
Tagged records 96

8 TRIMpl List Driver
GENESISsql Users Guide iii

Contents
Introduction 98
Making it Work 98

9 AcuCobol Vision Driver
Introduction 100
Making it Work 100

9 Micro Focus ExtFH Driver
Introduction 102
Making it Work 102

10 Messages & Codes
Generic GENESISsql Messages 104
Synergex SDMS and SQL 109

Creating Tables 109
Synergex SDMS-Specific Messages 109
SDMS Data Dictionary Utility Messages 112

Software AG ADABAS C and SQL 115
Software AG ADABAS C-Specific Messages 115
FDT Utility Messages 116

Index 118
GENESISsql Users Guide iv

GENESISsql Users Guide

Preface

This guide explains how to use GENESISsql, Trifox’s SQL processor for low-level data
sources. If you write applications that access low-level data sources and flat files,
administer, install, or maintain GENESIS sites, or write custom driver applications, this
guide has information for you.

This guide does not discuss managing the database; for instructions and information
about database management procedures you must read your database vendor’s
documentation.

Organization
This document is a guide for using GENESIS. In addition to detailing the SQL and data
source-specific command support, it tells you how to use the existing data source
drivers.

This document is divided into the following chapters:

• Chapter 1, Basics— Discusses basic issues in accessing flat-file data sources in a
client/server environment.

• Chapter 2, GENESIS SQL Support --- Describes the SQL commands and provides
examples of their use.

• Chapter 3, GENESIS Built-In Functions— Describes the built-in functions that
add power and flexibility to GENESIS access.

• Chapter 4, GENESIS Dictionary - Describes the GENESIS Dictionary structure.

• Chapters 5 and on - Describe the various drivers.

Background
Trifox Inc. has been serving the relational database market since 1984 through consulting
and the development of software products. In 1987, Trifox created SQL*QMX for Oracle.
This easy-to-use, powerful querying and report writing tool, which is based on IBM’s
QMF, continues to be used at thousands of sites. In 1989, Trifox created TRIMtools, a
family of application and reportwriting tools now known as DesignVision. DesignVision
was developed in response to the OLTP requirements of several large application
vendors.

Database Access
VORTEX is an integrated family of products that allows nearly any production
application to access SQL data:

• On any or all of the major relational databases.
GENESISsql Users Guide 1

 Organization
• Across networks.

• Across platforms.

• With a dramatic increase in the number of concurrent users.

• Without any additional hardware.

In a client/server or multi-tier configuration, VORTEX makes it possible for your SQL
applications to access data on different platforms over one or more network
configurations. Currently it supports only TCP/IP.

Inherent in this approach are services that allow production applications originally
written for one relational database (such as Oracle) can access the same data on another
database (such as Informix), even if it is spread across different databases.

VORTEX Precompilers for C and COBOL, as well as a variety of program interfaces,
allow existing SQL programs to take full advantage of VORTEX services such as
performance enhancement, transaction monitoring, and flat-file database access.

With VORTEXaccelerator in your configuration, you dramatically increase the number of
concurrent users who can log on to a specific SQL production application. Your users
experience faster performance and you won’t have to change any programs or add any
hardware.

Application and Report Development
DesignVision DVapp lets you design, generate, and maintain forms-based applications.
You can easily port the pop-up windows, customizable menus and submenus, and
custom keyboard assignments, in fact the entire application, to Windows .NET, Unix,
OpenVMS, or HTML5 with no extra effort.

The reportwriter, TRIMreport, lets you create simple reports quickly, or complex reports
with absolute confidence in their power.

When you want to write stand-alone applications (including triggers) without a user
interface, the TRIMpl 4GL language gives you the freedom you want. The procedural
language has over 100 database-specific functions that help you write powerful
applications in very little time.

Reaching Legacy Data
GENESISsql is a SQL processor that accesses low-level data sources such as ISAM,
SDMS, ADABAS, RMS, and MicroFocus and makes the data accessible to VORTEX
clients. You can add GENESIS data sources to a VORTEX system in a matter of days,
simplifying what used to be an enormous task.

Conventions
Screen shots in this manual come from the Windows version of our software.

Trifox documentation uses the following conventions for communicating information:

Example Describes

CHOOSE REPORT > [F3] > Press [F3] on the CHOOSE REPORT menu and ...
GENESISsql Users Guide 2

 Revisions
Support
If you have a question about a TRIFOX product that is not answered in the
documentation (paper or online), contact the Customer Support Services group at:

• support@trifox.com

• Trifox Customer Support Services
2959 Winchester Boulevard
Campbell, CA 95008
U.S.A.

• 408-796-1590

Revisions

August 1999
Corrected errors in OpenVMS RMS Driver and Synergex SDMS Driver sections.

November 1999
Added listing for SDMS Data Dictionary Utility (wdd0) errors.

Added documentation for SET OPTION OPTIONTYPE in the SQL chapter.

Added information for RMS about the DDU and multivalue fields.

Separated single “Driver” chapter into individual chapters for each datasource.

December 1999
Corrected typographical errors.

Corrected typographical errors.

March 2000
Changed text in ADABAS C Driver chapter from “wdd6” to “gds6” to reflect filename
changes.

Added detail about unspecified shortnames in using the ADABAS C FDT utility.

Right-click Clicking the right mouse button.

Left-click Clicking the left mouse button.

connect_string Replace italicized text with your own variable.

vtxnetd Text in bold typewriter style represents strings
that you type exactly as they appear in the
manual.

Example Describes
GENESISsql Users Guide 3

 Revisions
May 2000
Added note for ADABAS C Driver on MVS for AFILE parameter

July 2001
Updated ADABAS C chapter with more exmples and explanations concerning PE and
MU fields.

May 2003
Added new RMS field types.

June 2006
Added DesignVision List Driver

Added AcuCorp Vision Driver

September 2007
Added GREATEST, LEAST function definitions

May 2008
Added SKIP, TOP keywords

Added CASE, CAST functions

October 2009
Added BITAND, BITOR, BITXOR, REPLACE, REVERSE functions

Added AM,PM masks to TO_CHAR and TO_DATE functions

Added SQL_BIT datatype

July 2010
Added new Insert and update syntax

February 2011
Added optimizer section to Genesis SQL Support chapter

Added ExtFH chapter

May 2012
Added GENESIS_INITSQL

Removed OJNESTON option

Oct 2012
Updated ADABASC catalog definitions
GENESISsql Users Guide 4

 Revisions
Nov 2013
Updated SET OPTION MERGESIZE definition

Jul 2016
Added SET OPTION OPTRETRY and TIMEOUT

Added SELECT optimizer index hints

Mar 2018
Updated GRANT (Object privileges)

Updated GRANT (Database privileges)

Modified SET PASSWORD command

Update GENESIS catalog table definitions

Aug 2018
Clarify password case sensitivity and special character usage

Oct 2018
Clarify REVOKE command usage

Jun 2021
Added CURDATETIME, CURRENT_DATE, CURRENT_DATETIME, CURRENT_TIME,
CURRENT_TIMESTAMP, CURTIMESTAMP built-in functions

Aug 2022
Update Date, Time, Timestamp function descriptions to include static values. See
CURDATE for an example.
GENESISsql Users Guide 5

GENESISsql Users Guide

Chapter 1

The Basics

GENESIS is a SQL processor that accesses low-level data sources such as ISAM, ADABAS
C, and other flat-file structures. It enables joins across heterogeneous databases and data
sources through its partnership with VORTEX.

You can use a number of languages including ODBC, Java, C, C++, Cobol, Perl and our
TRIMpl 4GL to create your client applications.

GENESIS currently supports:

• Software AG ADABAS C

• Synergex SDMS ISAM

• Microfocus ExtFH

• OpenVMS RMS

• AcuCorp Vision

• DesignVision Lists

Architecture
GENESISsql has two components: the SQL engine and the data-source specific drivers.
The GENESIS engine accepts commands from VORTEX and breaks them down into
multiple simple read and write commands to the target database driver.

GENESIS maintains a catalog of objects in the target database. There are nine GENESIS
catalog tables (discussed in more detail in Chapter 4).

GENESIS_TABLES Provides the mapping between SQL tables and views and the
target database’s files.

GENESIS_COLUMNS Provides the mapping between table columns and the target
database’s record fields.

GENESIS_INDEXES Provides the mapping between SQL indexes and the target
database’s keys.

GENESIS_XCOLUMNS Provides the mapping between SQL indexes and the target
database’s keys’ segments.

GENESIS_AUTHS Provides object authentication.

GENESIS_DEPENDS Keeps track of view dependencies.

GENESIS_FORKEYS Provides foreign key validation.
GENESISsql Users Guide 6

Chapter 1 The Basics Process
The first four tables are required and contain header GENESIS information as well as
database driver specifics. The header information is stored in the fields with "_" in the
column name. The rest of columns contain database-specific information. The other
tables are optional and are not applicable to all GENESIS drivers.

Process
CLIENT HOST

VORTEXserver

GENESISsql

GENESIS ADABAS C driver

ADABAS C

GENESIS dictionary tables
User dictionary tables
Data source file

read/write commands

ADABAS C ADALINK

VORTEXclient

SQL statement

(VORTEXnet)

All drivers make direct calls to the data source. Neither GENESIS nor VORTEX cache any of the
data. You program with SQL statements. GENESIS takes the SQL statements and breaks them
down into basic read, write, and update commands, which are translated to data source-specific
direct calls by the driver. This example shows the flow to an ADABAS C database on a remote
node.

For more information on specific drivers, consult specific driver chapters.

Datasource File
Because most of the work is performed by a generic SQL processor, adding new data
sources is a simple task. Data sources are described by a data source file. The file is
located by prepending the value of the GENESIS_HOME environment variable to the
name of the file. For example, on a UNIX system, GENESIS_HOME might be set to
/usr2/genesis. GENESIS would then look in /usr2/genesis for the data source
file identified in the connect string.

GENESIS_USERS Provides a userid and password security method.

GENESIS_VIEWS Provides the SQL view definitions.
GENESISsql Users Guide 7

Chapter 1 The Basics Catalog utility
Catalog utility
Each driver has its own GENESIS catalog utility. For example, the ADABAS C driver’s is
called gds6init. It takes two parameters, a data source file and one of:

• -i to initialize the GENESIS dictionary

• -a to add new dictionary entries

• -d to delete dictionary entries

Of course, each operating system has its own method for running the GENESIS catalog
utilities. For example, on MVS, the JOBS library contains two jcl scripts: GDS6INIT and
GDS6ADD.

For more information on specific GENESIS catalog utilities, review the specific driver
chapters.

Logging
Since GENESIS uses VORTEX you have all the VORTEX logging options available to you
on both the client and the server.

On the server side, you can define two environment variables.

• VORTEX_HOST_LOGFILE

• VORTEX_HOST_LOGOPTS

On the client side, you can define two environment variables.

• VORTEX_API_LOGFILE

• VORTEX_API_LOGOPTS

Connecting
The following sample connect strings and URLs illustrate client applets and programs
connecting to Genesis ADABAS C on Windows.

nthost hostname of Windows NT machine
1958 TCP/IP number that the VORTEXserver
 is listening on
"C:\\VTX\\BIN\\VTX4" database driver for GENESIS
"system/manager" Genesis userid and password
"adabasc:adabas" Genesis datasource to use

PERL example
$db->dbConnect("nthost",1958,"C:\\VTX\\BIN\\VTX4",
 "system/manager/adabasc:adabas",
 "VORTEX_HOME=c:\\VTX");
GENESISsql Users Guide 8

Chapter 1 The Basics Initialization SQL Commands
JAVA example
db.connect("nthost",1958,"C:\\VTX\\BIN\\VTX4",
 "system/manager/adabasc:adabas",
 "VORTEX_HOME=c:\\VTX");

JDBC example
url="jdbc:vortex//system/manager/adabasc:adabas@1958:nthost!" +
 "C:\\VTX\\BIN\\VTX4,VORTEX_HOME=c:\\VTX";

Some VORTEX client methods, such as VORTEXodbc and VORTEXc, use the net.ini
file located in the lib directory under the VORTEX_HOME environment variable to fill in
any network parameters that are not specified in the connection string. Please refer to the
VORTEX Installation and Usage Guide for more information.

Initialization SQL Commands
The SET OPTION (page 40) command is used to modify various GENESIS operating
parameters. Instead of adding these commands to every application, you can use the
GENESIS_INITSQL environment variable to point to a file containing these commands.
Each command can be up to 511 characters. All SQL commands except SELECT are
valid.
GENESISsql Users Guide 9

GENESISsql Users Guide

Chapter 2

Genesis SQL Support

Because each driver supports commands that make sense to its target database, not all
drivers support all the SQL commands that GENESIS supports. There are also important
differences in some of the implementations of SQL commands, especially DDL
statements.

There are no rules about how many words you put on a line or where the lines need to
break. The following conventions in this document are strictly for readability:

CAPS Capital letters mean the word is a keyword (command).

MIXed Capitals mixed with lower-case letters indicate that the word is a keyword, but
you can type either the full word or only the letters in capitals.

lower Lowercase words are variables; use your own.

{ } Curly braces mean you must choose at least one of the enclosed options.

[] Brackets mean you can choose one or more of the enclosed options or none of
them.

() Parentheses are part of the command. Type them just as they appear.

 | A vertical bar separates mutually exclusive options. You can only choose one.

, A comma separates multiple options. You can choose as many options as you
like. Just be sure to include the commas in the command between choices.

… The ellipses (three dots) mean you can repeat the marked section or commands as
many times as you want to.
GENESISsql Users Guide 10

Chapter 2 Genesis SQL Support
Summaries

NOTE: Commands that are not listed are currently unsupported.

CREATE INDEX (UNIQUE) index_name
 ON table_name
 (column_name (ASC | DESC) (,column_name (ASC | DESC)) ...
)

CREATE SYNONYM synonym_name
 FOR table_name

CREATE TABLE table_name
 (column_name datatype (NOT NULL)
 (, column_name datatype (NOT NULL)) ...)

CREATE VIEW view_name
 ((column_name(, column_name) ...))
 AS subselect
 (WITH CHECK OPTION)

DELETE FROM {table_name | view_name} (correlation_name)
 (WHERE search_condition)

DROP INDEX index_name

DROP SYNONYM synonym_name

DROP TABLE table_name

DROP VIEW view_name

GRANT privilege., ..TO { grantee }
 IDENTIFIED by { password }

INSERT INTO table_name
 [(column_list)]
 { VALUES (constant_list) }

REVOKE { privilege., ..} FROM { grantee }

 privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

SELECT [SKIP n] [TOP n] [ALL | DISTINCT] select_list
 FROM {table_name | view_name} (corr_name)
 (, {table_name | view_name} (corr_name)) ...
 (WHERE search_condition)
 (GROUP BY column_name (, column_name) ...)
 (HAVING search_condition)
GENESISsql Users Guide 11

Chapter 2 Genesis SQL Support Predicates
 (ORDER BY {column_name | select_list_number } (ASC | DESC)) ...
)

SET PASSWORD {old_password} {new_password}
UPDATE {table_name | view_name} (correlation_name)
 SET
 column_name = {expression | NULL}
 (column _name = {expression | NULL}) ...
 (WHERE search_condition)

SQL Identifiers
SQL identifiers such as column, table, index names are limited to 30 characters.
Identifiers must start with an alphabetic character and can include numbers as well as the
“_” character. Avoid using any special characters such as “-” and “+”. Using special
characters will require that you put ““ around identifiers in your SQL statements.

Transaction Management
The transaction management statements, BEGIN WORK, COMMIT WORK and
ROLLBACK WORK are not directly supported in GENESISsql. Rather you use the client
APIs transaction management functions to perform these operations. For example,
VORTEXjdbc has Connection methods called commit() and rollback() which send the
appropriate commands to GENESISsql. Also note that not all datasources can actually
perform transaction management. For example, the OpenVMS GENESIS RMS driver will
simply ignore these commands since RMS itself does not support transaction
management.

Predicates
Predicates are expressions that apply comparison operators (comp_op elements in the
following syntax) and/or SQL predicate operators (IN, EXISTS, and so on) to values to
produce a truth value of TRUE, FALSE, or UNKNOWN.

Predicate can be either a single expression or a combination of any number of
expressions using Boolean operators (AND, OR, and NOT) as well as the special SQL
operator IS, and parentheses to define the order of evaluation.

Predicates are most often used in the WHERE and HAVING clauses of SELECT
statements and subqueries to determine the rows or aggregate groups to select and in
UPDATE and DELETE statements to identify the rows on which changes should be
made.

Predicates evaluate to TRUE, FALSE, or UNKNOWN. UNKNOWNs arise when NULLs
are compared to any value, including other NULLs, since it is impossible to know the
value of a data field with NULL value. You can use Boolean operators and SQL IS on
UNKNOWN truth values.

Constraints
The ANSI standard defines a list of constraints that can be placed on a table or index.
Constraints following the definition of a column apply to that column; those standing
alone as table constraints can reference any one or more columns in the table.
GENESISsql Users Guide 12

Chapter 2 Genesis SQL Support SQL Optimization
At this time GENESIS supports only the NOT NULL constraint. The complete list of
possible constraints are:

NOT NULL Forbids NULLs from being entered in a column. According to ANSI
standard, this specification can only be a column constraint.

UNIQUE Mandates that every column value, or combination of column values if
a table constraint, be unique.

PRIMARY KEY Same effect as UNIQUE, except that none of the columns in a
PRIMARY KEY constraint can contain NULLs. You can only issue this
constraint once in a given table.

CHECK Followed by a predicate (in parentheses) that uses column values in
some expression whose value can be TRUE, FALSE, or in the presence
of NULLs, UNKNOWN. The constraint is only violated when the
predicate is FALSE.

You can define constraints so that they are not checked until the end of the current
transaction. This approach is very useful when, for example, you want to update a table
that references itself as a parent key. This operation usually creates intermediate states
where referential integrity must be violated. By default, constraints are not deferrable.

SQL Optimization
Genesis optimizes SQL queries using various heuristics applied to the SQL statement and
any indexes that are defined on the source tables. You can see what optimizations have
occured by using the following options:

set option tree on
set option plan on

These will display the query tree and optimization plan to stdout. You can use

set option logfile ‘filename’

to send this output to filename.

Genesis runs through all the posible optimization plans, creating a score for each plan,
and then chooses the plan with the highest score. For very complicated queries with
many tables, indexes, and predicates, this process may take a significant amount of time.
You can limit the number of generated plans using

set option maxoptloop n

Indexes
An index will only be considered if at least the first key column of the index is part of the
query’s predicate. For example,

create table staff(id integer,name varchar(10),dept smallint,
job char(6), years smallint,
salary decimal(8,2),comm decimal(8,2))

create index staff_ix0 on staff(id,name)
GENESISsql Users Guide 13

Chapter 2 Genesis SQL Support SQL Optimization
create index staff_ix1 on staff(name,dept)

The following queries will use the defined indexes:

staff_ix0:
select * from staff where id = 10
select * from staff where id = 10 and name = ‘PERNAL’

staff_ix1:
select * from staff where name = ‘SANDERS’
select * from staff where name = ‘SANDERS’ and dept = 15

This query will not use an index:

select * from staff where dept = 15

Even though dept is part of staff_ix1, it is not the first column and so it cannot be used.

In general, the more consequetive index columns used in a query, the better. For
example,

create index staff_ix2 on staff(id,name,dept)
select * from staff where id = 10 and name = ‘SANDERS’

and dept = 15

This query will use index staff_ix2 instead of staff_ix0 because all three predicate
columns fit in the index whereas only two columns fit in staff_ix0.

Boolean operators
Predicate clauses are connected with either AND or OR operators. AND operators are
easier to optimize because the values can be pushed to an index. OR operators are much
more complicated. For example,

select * from staff where id = 10 or id = 20
select * from staff where id in (10,20)

Both of these mean the same thing. The IN keyword is simply shorthand. In this case, the
optimizer cannot simply use staff_ix0 because the predicate is looking for multiple values
of the same column. The optimizer can however still use staff_ix0 by breaking up the
query into two portions and merging the results:

select * from staff where id = 10
select * from staff where id = 20

Genesis keeps track of the records returned so that the same records are not returned for
the case where the same values are in multiple OR clauses. For example, Microsoft
Access always generates ten OR clauses when it fetches records based on key values. So
even if there are only 5 unique key values, it simply repeats the last one to fill out the ten
OR clauses. Genesis keeps these record identifiers in its merge buffer. The default size of
the merge buffer is 10000 records. This is modified using
GENESISsql Users Guide 14

Chapter 2 Genesis SQL Support SQL Optimization
set option mergesize n

where 0 <= n <= 65535. If n = 0, then the above optimization will not be performed. You
will receive a “MERGESIZE overflow” error if your query returns greater than n
qualifying records. In this case, you can either change the query or set mergesize = 0.

Joins and Subqueries
Predicate values do not have to constants. For example,

create table org(deptnumb smallint,deptname varchar(16),
manager smallint,division char(10),
location varchar(16))

create index org_ix0 on org(deptnumb)
select * from staff where id = (select manager from org)

will use staff_ix0 for the main query and a table scan for the subquery. Adding

create index staff_ix3 on staff(id,dept)
select id,name from staff,org where id = manager and

dept = deptnumb
select id,name from staff,org where id = manager and

dept = deptnumb and
deptnumb > 10

the first query will use staff_ix3 with both values returned from the org table scan and
the second query will use staff_ix3 as well as org_ix1.
GENESISsql Users Guide 15

Chapter 2 Genesis SQL Support CREATE INDEX
CREATE INDEX
Creates an index on a base table.

Syntax
CREATE [UNIQUE] INDEX index_name
 ON table_name
 (column_name [ASC | DESC] [,column_name [ASC | DESC]]...)

Keywords & Parameters
UNIQUE Creates a unique index.

index_name The name of the index to create.

table_name The name of the table for the index.

column_name Column name to use in the index key. The index key is built using the
columns in the order you specify in this list.

Use
GENESIS lets you create an index at any time as long as the base table you want to index
exists; however, not all database management systems have this flexibility. In addition,
not all databases let you sort columns using the keywords ASC and DESC.

Consult your database SQL syntax guide before you try to create an index on your table.

Example
CREATE UNIQUE INDEX STAFF_IX1 ON STAFF(ID)

CREATE INDEX STAFF_IX2 ON STAFF(DEPT,NAME)
GENESISsql Users Guide 16

Chapter 2 Genesis SQL Support CREATE SYNONYM
CREATE SYNONYM
Creates a synonym for the base table.

Syntax
CREATE SYNONYM synonym_name
 FOR table_name

Keywords & Parameters
synonym_name The name of the synonym to create.

table_name The name of the table for the synonym.

Use
GENESIS lets you create a synonym for a base table. The synonym can be used in place of
[owner.]tablename in SQL statements.

Example
CREATE SYNONYM MYSTAFF FOR STAFF
GENESISsql Users Guide 17

Chapter 2 Genesis SQL Support CREATE TABLE
CREATE TABLE
Creates a permanent or temporary base table.

Syntax
CREATE TABLE table_name
 (column_name datatype (NOT NULL)
 (, column_name datatype (NOT NULL)) ...)

Keywords & Parameters
table_name The name of the table to create.

column_name Column name to create in table. Columns are created in the order you
specify in this list.

datatype Datatype for the specified column. You must specify a valid datatype for
each named column to successfully create the table.

datatype can be:
• CHAR[n] — fixed length character string (default: n = 1, max = 4000)
• VARCHAR[n] — variable-length character string (default: n = 1, max

= 4000)
• NCHAR[n] -- fixed length UCS2 character string (default: n = 1, max =

4000)
• NVARCHAR[n] — variable-length UCS2 character string (default: n

= 1, max = 4000)
• DATETIME — date and time (to the second)
• DECIMAL(p[,s]) — decimal of precision p, scale s
• FLOAT — equivalent to DECIMAL(16,6)
• REAL — equivalent to DECIMAL(8,6)
• DOUBLE — equivalent to DECIMAL(16,6)
• INTEGER — four-byte integer
• SMALLINT — two-byte integer

Use
GENESIS supports only the creation of permanent base tables. Tables contain one or
more columns, separated by commas, which must also be defined when you create the
table.

To define a column you specify a column_name, a datatype for the data in that column,
and whether the data can be NULL or not.

The order of the columns in this statement determines their order in the table. A column
definition must include:

• The name of the column. The column must be named.

• A datatype that applies to all column values.

• NULL or NOT NULL designation.
GENESISsql Users Guide 18

Chapter 2 Genesis SQL Support CREATE TABLE
Some datatypes accept size arguments indicating, for example, the length of a fixed-
length character string, or the scale and precision of a decimal number. The meaning and
format of these vary with the datatype, but defaults exist.

Default values
If you specify a NOT NULL constraint for a column, every INSERT or UPDATE
command on the column must leave it with a specified value.

Ownership and access control
Tables and other database objects are created and owned by authorization IDs, which
means users in most contexts. An object’s owner controls the privileges others have on it.
In a sense, then, all privilege flows from the right to create objects. Tables are grouped
into schemas and can only be created by the owner of the schema in which they reside.

Example
CREATE TABLE STAFF(ID INTEGER NOT NULL,
 NAME VARCHAR(10) NOT NULL,DEPT INTEGER NOT NULL,
 JOB VARCHAR(6) NOT NULL,YEARS INTEGER,
 SALARY DECIMAL(8,2) NOT NULL,COMM DECIMAL(8,2))
GENESISsql Users Guide 19

Chapter 2 Genesis SQL Support CREATE VIEW
CREATE VIEW
Defines a view.

Syntax
CREATE VIEW table_name (column_list)
 AS (SELECT statement);

Keywords & Parameters
table_name Name of virtual table, or view.

column_name List of columns to display in view.

statement Criteria by which you identify rows that you want to retrieve.

Use
This statement creates a view, also known as a virtual table. A view is an object that is
treated as a table, but whose definition contains a query — a valid SELECT statement.
Because the query may access more than one base table, a view may combined data from
several tables. Views do not contain their own data. Because the rows of a view are, by
definition, unordered, you cannot use ORDER BY when creating a view.

You reference a view in SQL statements just like base tables. When you reference the
view in a statement, the output of the query becomes the content of the view for the
duration of that statement. In cases where views can be updated, the changes are
transferred to the underlying data in the base table(s).

The tables or views directly referenced in a query are called the simply underlying tables of
the query or view. These combined with all the tables they reference, and all the
subsequently referenced tables all the way down to and including the base tables that
contain the data, are called the generally underlying tables. The base tables — the ones that
do not reference any other tables, but actually contain the data — are called the leaf
underlying tables. View definitions cannot be circular. That is, no view can be among its
own generally underlying tables.

Views also cannot contain target specifications or a dynamic parameter specifications.
The list of columns is used to provide the columns with names that are used only in
given view. You can use it if you do not want to retain the names that the columns have
in the underlying base table(s). You must use it whenever:

• Any of the two columns would otherwise have identical names.

• Any of the columns contain computed values or any values other than column
values directly extracted from the underlying tables, unless an AS clause is used
in the query to name them.

• There are any joined columns with distinct names in their respective tables,
unless an AS clause is used in the query to name them.

If you do name the columns, you cannot use the same column name twice in the same
view. If you name the columns, you must name all of them, so the number of columns in
the name list is the same as the SELECT clause of the contained query. You can use
GENESISsql Users Guide 20

Chapter 2 Genesis SQL Support CREATE VIEW
SELECT * in the query to select all columns; this command is converted internally to a list
of all columns so that if a column is added to an underlying table (using ALTER TABLE),
your view remains valid.

Views can base their queries on other views, as long as the definition is not circular.
Views cannot reference declared temporary tables, although global and created local ones
are acceptable.

Inserting, updating, and deleting values in views
When you perform any of these operations on a view the changes are transferred to the
base table that contains the data. Such operations are only permitted if the changes that
must be made to the underlying table are unambiguous. The principle is that an insertion
or change to one row in the view must translate to an insertion or change to one row in
the leaf underlying table. If this is the case, the view is said to be updatable. The specific
conditions outlined in the standard for a view to be updatable are:

• It must be drawn on one and only one simply underlying table. Joins are not
allowed.

• It must contain one and only one query.

• If the simply underlying table is itself a view, that view must also be updatable.

• The SELECT clause of the contained query may only specify column references,
not value expressions or aggregate functions, and no column can be referenced
more than once.

• The contained query can not specify GROUP BY or HAVING.

• The contained query cannot specify DISTINCT.

• Subqueries are permissible, but only if they do not refer to any of the generally
underlying tables on which the view is based.

Example
CREATE VIEW STAFF_VIEW (Employee_id, Employee_name, Employee_dept)
 AS SELECT ID,NAME,DEPT FROM STAFF
GENESISsql Users Guide 21

Chapter 2 Genesis SQL Support DELETE
DELETE
Deletes rows from a table.

Syntax
DELETE FROM table_name (correlation_name)
 [(WHERE search_condition) |
 { (WHERE CURRENT OF cursor_name) }]

Keywords & Parameters
table_name Name of table or view from which to delete data rows.

correlation_nameAlso called range variable or alias, provides alternative name for the
table whose name it follows; the definition lasts only for the duration of
the statement. Correlation names are an option of convenience for base
tables and views, but required for tables produced by subqueries.

search_condition Criteria by which you identify rows on which you want to act.

Use
This statement can be coded directly or, in dynamic SQL, be a prepared statement, which
is a statement whose text is generated at runtime. The DELETE statement removes rows
from permanent base tables, views, or cursors. In the last two cases, the deletions are
transferred to the base table from which the view or cursor extracts its data.

The WHERE CURRENT OF form is used for deletions from cursors. The row currently in
the cursor is removed. This is called a positioned deletion. The WHERE predicate form is
used for deletions from base tables or views. All rows that satisfy the predicate are
removed at once. This is called a searched deletion. If the WHERE clause is absent, it is also
a searched deletion, but all rows of the table or view are removed. The following
restrictions apply to both types:

• You must have DELETE privilege on the table to delete it.

• If the deletion is performed on a view or cursor, that view or cursor must be
updatable.

• The current transaction mode cannot be read-only.

Searched deletions
The predicates used in DELETE statements, like those in SELECT and UPDATE, use one
or more expressions — for example, location =’Bahrain’ — and test whether they are
TRUE, FALSE, or if NULLs exist, UNKNOWN for each row based on the values within
that row. Each row for which the predicate is TRUE is deleted.

Positioned deletions
Positioned deletions use cursors and therefore only apply to static or dynamic, not to
interactive SQL. You can use a positioned deletion if:

A cursor is within the current module or one of its compilation unit emulations that
references the table.
GENESISsql Users Guide 22

Chapter 2 Genesis SQL Support DELETE
• This cursors has been opened within the current transaction.

• This cursor has had at least one row fetched.

• The cursor has not yet been closed.

The last row fetched is deleted.

Prepared DELETE statements
The PREPARE statement lets you generate the text of dynamic SQL statements at
runtime. When you use PREPARE to generate a positioned deletion, you can omit the
FROM table_name clause of the DELETE statement. The table underlying the cursor is
assumed.

Example
Downsize department 15:

DELETE FROM STAFF WHERE DEPT = 15
GENESISsql Users Guide 23

Chapter 2 Genesis SQL Support DROP INDEX
DROP INDEX
Drop an index from a base table.

Syntax
DROP INDEX index_name;

Keywords & Parameters
index_name Name of the index to drop.

Use
This statement is used to drop an index.

Example
DROP INDEX STAFF_IX1
GENESISsql Users Guide 24

Chapter 2 Genesis SQL Support DROP SYNONYM
DROP SYNONYM
Creates a synonym for the base table.

Syntax
DROP SYNONYM synonym_name

Keywords & Parameters
synonym_name The name of the synonym to drop.

Use
This statement is used to drop a previously defined synonym.

Example
DROP SYNONYM MYSTAFF
GENESISsql Users Guide 25

Chapter 2 Genesis SQL Support DROP TABLE
DROP TABLE
Destroys a base table.

Syntax
DROP TABLE table_name ;

Keywords & Parameters
table_name Name of the table to drop.

Use
This statement is used to drop the same kinds of tables that are created with a CREATE
TABLE statement: permanent base tables, global temporary tables, and created local
temporary tables. Drop views with the DROP VIEW statement. To drop a table you must
own the schema in which the table resides.

The definition of the table is destroyed and all users lose their privileges on that table.

Example
DROP TABLE STAFF
GENESISsql Users Guide 26

Chapter 2 Genesis SQL Support DROP VIEW
DROP VIEW
Destroys a view.

Syntax
DROP VIEW view_name ;

Keywords & Parameters
view_name Name of the view to drop.

Use
This statement drops a view, which must previously have been created with a CREATE
VIEW statement. To drop a view you must own the schema within which the view
resides.

Example
DROP VIEW STAFF_VIEW
GENESISsql Users Guide 27

Chapter 2 Genesis SQL Support GRANT (Database privileges)
GRANT (Database privileges)
Gives privileges to users.

Syntax
GRANT privilege., ..TO { grantee } [IDENTIFIED by { password }]

privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

Keywords & Parameters
privilege Type of privilege to grant.

grantee User name to allow privilege.

password Password for User name.

Use
Only DBAs can use this GRANT. If you are a DBA, it lets you give grantees (the
authorization ID that represents a user) the right to perform specified actions on the
database.

CONNECT privilege lets grantees connect to the database with the correct password.

RESOURCE privilege lets grantees create objects in the database.

DBA privilege implies both CONNECT and RESOURCE and lets grantees connect and read
or modify any table in the database.

If the grantee does not already exist, then the IDENTIFIED by {password} clause must be
included. If the password is not enclosed in double quotes, then it will be uppercased
and connections must present it uppercased. Double quoted passwords are used literally
and can contain non-indentifier characters except for “:”.

Example
GRANT CONNECT,RESOURCE TO CLERK IDENTIFIED BY MY42
GENESISsql Users Guide 28

Chapter 2 Genesis SQL Support GRANT (Object privileges)
GRANT (Object privileges)
Gives privileges to users.

Syntax
GRANT privilege., ..ON object_name
 TO { grantee., ...} | PUBLIC

privilege ::=
 { ALL PRIVILEGES }
 | { SELECT
 | DELETE
 | INSERT
 | UPDATE }

object name ::=
 [TABLE] table name

Keywords & Parameters
privilege Type of access, action, or privilege to grant.

object_name Name of the object on which to grant privileges.

grantee User name(s) to allow privilege.

Use
This statement gives grantees (the authorization ID that represents a user) the right to
perform specified actions on named objects.

USAGE
To grant a privilege, you (the ‘‘grantor’’) must have the privilege itself, with the grant
option and may grant it with this option, which allows the grantee to further grant the
privilege.

ALL PRIVILEGES
ALL PRIVILEGES passes on all applicable privileges that you are entitled to grant.
PUBLIC denotes all authorization IDs, present and future.

Other Privileges
SELECT, INSERT, UPDATE, and DELETE let grantees execute the statements of the same
names on the object.

Privileges Cascade
Privileges can cascade up; that is, privileges granted on some object can imply grants of
privileges on other objects. These situations are covered by the following principles:
GENESISsql Users Guide 29

Chapter 2 Genesis SQL Support GRANT (Object privileges)
• If the grantee owns an updatable view, and is being GRANTed privileges on its
leaf underlying table (the base table wherein the data finally resides, regardless
of any intervening tables or views), these privileges are GRANTed for the view
as well. If specified, the grant option also cascades up. There is only one leaf
underlying table for an updatable view. (See CREATE VIEW.)

• If the grantee owns an updatable view that immediately references the table on
which privileges are being GRANTed (in other words, if the reference appears in
the FROM clause without an intervening view), these privileges can also cascade
up, including the grant option, if applicable.

• If the grantee owns a view, updatable or not, that grantee already has the
SELECT privilege on all tables referenced in its definition as well as on the view
itself. If the grantee gains the grant option on SELECT on all the referenced
tables, he also acquires the grant option on the SELECT privilege on the view.

For each privilege that is granted, an entry is made in the GENESIS_AUTHS table. The
entry indicates:

• The grantee that has received the privilege.

• The privilege itself (the action that can be performed).

• The object on which the privilege is granted.

• The grantor that conferred the privilege.

Multiple identical privilege descriptors are combined, so that a privilege granted twice
by the same grantor need only be revoked once. Likewise if two privilege descriptors
differ only in that one confers grant option and the other does not, they are merged into a
single privilege with grant option. If the grantor lacks the ability to grant the privileges
attempted, a completion condition is raised — a warning that privileges were not
granted.

Example
GRANT SELECT ON STAFF TO CLERK
GENESISsql Users Guide 30

Chapter 2 Genesis SQL Support INSERT
INSERT
Inserts rows into a table.

Syntax
INSERT INTO table_name
 [(column_list)]
 { VALUES (values_list) | SELECT statement}

Keywords & Parameters
table_name Name of table into which values are inserted.

column_list Identifies the columns of the table into which the values are inserted.
All columns not in the list receive a NULL value. If any such column
has a NOT NULL constraint, the INSERT fails.

If you omit the list, all columns of the table are the target of the insert.
The number and order in which you list the columns must match the
number and order of either the values_list or the the output columns of
the query.

values_list A simple list of values to insert.

Use
This statement enters one or more rows into the table named in table_name.

You must have INSERT privileges on all named columns to issue an INSERT statement.
The table may not be a view.

The SELECT statement can return any number of rows.

Example
INSERT INTO STAFF VALUES
(10,’Sanders’,15,’Clerk’,7,12345.67,543.54)

INSERT INTO STAFF SELECT ID,NAME,DEPT,JOB,YEARS,SALARY,COMM
from OLD_STAFF where ID NOT IN (SELECT A.ID from STAFF A)
GENESISsql Users Guide 31

Chapter 2 Genesis SQL Support REVOKE (Database privileges)
REVOKE (Database privileges)
Removes the privilege to perform an action.

Syntax
REVOKE { privilege., ..} FROM { grantee }

privilege ::=
 { CONNECT
 | DBA
 | RESOURCE }

Keywords & Parameters
privilege Type of access, action, or privilege to grant.

grantee User name(s) to allow privilege.

Use
This statement removes privileges from authorization IDs that have previously received
them with the GRANT statement. Only a DBA can execute this statement.

Removing CONNECT privilege means that the grantee can no longer access the database.
It has no effect on the objects owned by that grantee. Removing RESOURCE privilege
means that the grantee can no longer create new objects. Be very careful removing DBA
privilege: If there are no more DBAs then the GRANT and REVOKE statements can no
longer be used.

Example
REVOKE CONNECT FROM CLERK
GENESISsql Users Guide 32

Chapter 2 Genesis SQL Support REVOKE (Object privileges)
REVOKE (Object privileges)
Removes the privilege to perform an action.

Syntax
REVOKE
 { ALL PRIVILEGES } | { privilege., ..}
 ON object_name
 FROM PUBLIC | { grantee .,.. }

Keywords & Parameters
privilege Type of access, action, or privilege to grant.

object_name Name of the object on which to grant privileges.

grantee User name(s) to allow privilege.

Use
This statement removes privileges from authorization IDs that have previously received
them with the GRANT statement. Authorization IDs refer to users. The privileges follow
the definitions and rules outlined under GRANT. The GRANT option is the ability to
grant the privileges received in turn to others.

In any case, the revoker of the privilege is the same authorization ID that granted it, and
all dependent privileges may be revoked. A privilege (privilege A) depends directly on
another (privilege B) if either of the following sets of conditions is met:

1. Privilege A is grantable (has GRANT option)

and

2. The grantee of A is PUBLIC or the same as the grantee of B

and

3. A and B are both privileges for the same action on the same object.

OR

1. The actions of the two privileges are the same

and

2. The grantee of A owns the object (which must be a table) on which the privileges
exist.

and

3. Either privilege B is on a view referencing a table on which privilege A is the SELECT
privilege (if it is a read-only view) or the privilege at hand (if it is an updatable one).

Example
REVOKE SELECT ON STAFF FROM CLERK
GENESISsql Users Guide 33

Chapter 2 Genesis SQL Support SELECT
SELECT

Syntax
SELECT [SKIP n] [TOP n] [ALL | DISTINCT] select_list
 FROM [table_name | subquery] (corr_name) (index hints)
 (, [table_name | subquery] (corr_name) (index hints)) ...
 (INNER or OUTER JOINS) ...
 (WHERE search_condition)
 (GROUP BY column_name (, column_name) ...)
 (HAVING search_condition)
 (ORDER BY {column_name | select_list_number } (ASC | DESC)) ...

Keywords & Parameters
select_list List of columns on which to act.

table_name Name of table in which the columns reside.

correlation_name Also called range variable or alias, provides alternative name for the
table whose name it follows; the definition lasts only for the duration
of the statement. Correlation names are an option of convenience for
base tables and views, but required for tables produced by
subqueries.

search_condition Criteria by which you identify rows on which you want to act.

column_name Name of the column to evaluate with the search_condition.

select_list_number Position in the select list of the column to evaluate with the
search_condition.

Use
This is the statement used to formulate queries — requests for information from the
database. To issue this statement you must have the SELECT privilege on all tables
accessed. Queries may be stand-alone or used in the definitions of views and cursors. In
addition, you can use them as subqueries, to produce values that are used within other
statements including the SELECT statement itself. Sometimes a subquery is evaluated
separately for each row processed by the outer query. Values from that outer row are
used in the subquery. Queries of this type are called correlated subqueries.

The output of a query is itself a table, and the SELECT clause defines the columns of that
table (the output columns).

Clauses of the SELECT statement are evaluated in the following order:

1. FROM

2. INNER/OUTER JOIN

3. WHERE

4. GROUP BY

5. HAVING

6. SELECT
GENESISsql Users Guide 34

Chapter 2 Genesis SQL Support SELECT
7. ORDER BY

SELECT list (SELECT statement)
The SELECT list appears as the first clause in a SELECT statement, but it is not the first
logical step. The other clauses produce a set of rows, the source rows, from which the
output is derived.

The SELECT list determines which columns from these rows are output. It may directly
output these columns, or it may use them in aggregate functions or value expressions.
Value expressions can be NUMERIC, STRING, or DATETIME; they may include
aggregate functions and subqueries.

If SKIP n is specified, then the first n rows of the result set are discarded. If TOP n is
specified, then only the first n rows are returned. If DISTINCT is specified, the rows are
compared and if any duplicate rows are found, only one copy appears in the output. The
SELECT clause may contain any of the following:

• Aggregate functions — Functions that extract single values from groups of
column values — for example, SUM or COUNT.

• An asterisk (*) — All the columns of all tables listed in the FROM clause are
output in the order in which they appear in the FROM clause.

• qualifier.* — Where the qualifier is the table or correlation name referenced in the
FROM clause. All columns of that (possibly derived) table are output, excluding
common columns of joined tables.

• A value expression — Normally is (or includes) a column name from one of the
tables identified in the FROM clause. Either the column’s value is directly output
or it becomes part of some expression, such as AMOUNT * 3.

• A specified column name — If the output columns are directly taken from one
and only one column referenced in the FROM clause, it inherits the name of that
column by default. You can override this name by using the AS clause. The
names of columns not directly taken from input columns are implementation-
dependent. You are not required to name any output columns by the SELECT
clause, but may be required to by the context of the way the output columns are
to be used (for example, in a view). It doesn’t make any difference whether you
include the word AS — if omitted, it is implied.

If aggregate functions and value expressions are mixed, all the value expressions must be
specified in a GROUP by clause.

FROM clause (SELECT statement)
The FROM clause names the source tables for the query. These tables may be:

• Tables or views named and accessed directly.

• Derived on the spot with a subquery.

• Explicit joins.

The FROM clause determines the one or more tables from which the data is taken or
derived. These sources can include temporary or permanent base tables, views, or the
results of a subqueries and other operations that return tables.
GENESISsql Users Guide 35

Chapter 2 Genesis SQL Support SELECT
You can use correlation names to qualify ambiguous column references in the rest of the
statement. You can choose to join a table to itself, which is treated as a join of two
identical tables; in this case, you must use correlation names to distinguish the two
‘‘copies.” They prefix the column_name separated by a period. The column name lists here
are for renaming columns, just as they are in the SELECT clause.

The names used here, however, are not for the output; they are for references to the
columns made in the remainder of the statement, particularly in the WHERE clause. They
are optional, but may be required to clarify column references in some cases.

Index hints are used to force which indexes the optimizer considers when optimizing the
predicates for a table. GENESIS currently supports two index hint phrases: USE INDEX
and IGNORE INDEX. Both phrases can be used and the order is not important. The
indexes are specified in a comma separated list within parenthesis following the phrase.
The index names can be found either by using the SET OPTION PLAN ON command or
by querying the GENESIS_INDEXES and GENESIS_XCOLUMNS tables. For example,
table STAFF has two indexes: STAFF01 on column ID and STAFF02 on columns ID and
NAME. Using

SELECT * FROM STAFF USE INDEX(STAFF01) WHERE ID=42

directs the optimizer to consider only the STAFF01 index when optimizing this query. If
the statement is

SELECT * FROM STAFF USE INDEX(STAFF01) WHERE NAME=’SANDERS’

then the optimizer will attempt to use only the STAFF01 index but since this index cannot
be used, the optimizer will create a table scan which is not a good solution. The USE
INDEX phrase eliminates all indexes that are not specified from optimizer consideration,
similar to specifying them in the IGNORE INDEX phrase. Index hints can help the
optimizer create better plans based on your knowledge of the data in your tables but you
must be careful not to inadvertently direct it to use table scans.

Joins
If more than one table is named in the FROM clause, they are all implicitly joined. This
means that every possible combination of rows (one from each table) is, in effect, derived.
In addition, this concatenation is the table on which the rest of the query operates. The
concatenated table is called a Cartesian product or cross join.

Another method of adding extra join tables is by using the INNER join syntax:

(INNER) JOIN <tablename> ON <Column1> <op> <Column2>

where <column1> is a column in <tablename> and <column2> is a column in another
FROM or INNER/OUTER clause table. Multiple conditions can be added similar to the
WHERE clause defined below.

Outer Joins
GENESIS supports OUTER joins, including LEFT, RIGHT, and FULL. The outer joins
follow the FROM clause and are of the form:

<LEFT | RIGHT | FULL> OUTER JOIN <tablename> ON <column1> = <column2>
GENESISsql Users Guide 36

Chapter 2 Genesis SQL Support SELECT
where <column1> is a column in <tablename> and <column2> is a column in another
FROM or INNER/OUTER clause table. Multiple conditions can be added similar to the
WHERE clause defined below.

WHERE clause (SELECT statement)
The WHERE clause defines the criteria that rows must meet in order to be used for
deriving the output.

The WHERE clause contains a predicate, which is a set of one or more expressions that
can be TRUE, FALSE, or UNKNOWN. Values are compared according to:

NULLS Compared to any value, including other NULLs produces
UNKNOWNs.

Character string types Collating sequence

Numeric types Numerical order

Date-time types Chronological order

These comparisons are expressed using the following operators: =, <, <=, >, =>, and < >
(does not equal).

Operators such as * (multiplication) or || (concatenation) maybe applied depending on
the datatype. In most situations, row value constructors may be used instead of simple
value expressions.

In addition to the standard comparison operators, SQL provides the following special
predicate operators. Assume that B and C are all value expressions, which can be column
names or direct expressions (possibly using column names or aggregate functions) in the
appropriate datatype:

B BETWEEN A AND C Equal to (A <= B) AND (B < = C). A and C must be specified in
ascending order. B BETWEEN C AND A is interpreted as (C <
=B) AND (B < =A) which is FALSE if the first expression is TRUE,
unless all three values are the same. If any of the values is NULL
the predicate is UNKNOWN.

A IN (C, D,., …) This is true if A equals any value in the list.

A LIKE ‘string’ This assumes that A is a character string and searches for the
specified substring. Fixed and varying-length wildcards can be
used.

A IS NULL Specifically tests for NULLs. Unlike most other predicates, it can
only be TRUE or FALSE, not UNKNOWN.

A comp op SOME |
ANY subquery

SOME and ANY have equivalent meanings. The subquery
produces a set of values. If, for any value V so produced, A comp
op V is TRUE, then the ANY predicate is TRUE.

A comp op ALL
subquery

Similar to ANY, except that all the values produced by the
subquery have to make A comp op V true.
GENESISsql Users Guide 37

Chapter 2 Genesis SQL Support SELECT
These predicates are combined using the conventional Boolean operators AND, OR, and
NOT. For TRUE and FALSE values, these have the conventional results. The rows
selected by the WHERE clause, whether direction extracted from tables or based on
Cartesian products, are the ones that go on to be processed by subsequent clauses.

GROUP BY clause (SELECT statement)
The GROUP BY clause groups the output over identical values in the named columns. If
you use this clause, every value expression in the output column that includes a table
column must be named in it unless it is an argument to aggregate functions. GROUP BY
is used to apply aggregate functions to groups of rows defined by having identical values
in specified columns.

If you don’t use GROUP BY, either all or none of the output columns in the SELECT
clause must use aggregate functions. If all of them use aggregate functions, all rows
satisfying the WHERE clause (if any) or all rows produced by the FROM clause (if there
is no WHERE clause) are treated as a single group for deriving the aggregates.

The GROUP BY clause defines groups of output rows to which aggregate functions
(COUNT, MIN, AVG, and so on) can be applied. If you do not use this clause and elect to
use aggregate functions, the column names in the SELECT clause must all be contained in
aggregate functions and the functions are applied to all rows to satisfy the query.

Otherwise, each column referenced in the SELECT list outside an aggregate function
must be a grouping column and be referenced in this clause. All rows output from the
query that have all grouping column values equal constitute a group. (For the purposes
of GROUP BY all NULLs are considered equal). The aggregate function is applied to each
such group.

HAVING clause (SELECT statement)
The HAVING clause defines criteria that the groups of rows defined in the GROUP BY
clause must satisfy to be output by the query.

Just as the WHERE clause defines a predicate to filter rows, HAVING is applied after
grouping to define a similar predicate to filter the groups based on the aggregate values.
It is needed to test for aggregate function values, as these are not derived from single
rows of the Cartesian product defined by the FROM clause, but from groups of such
rows and therefore cannot be tested in a WHERE clause.

ORDER BY clause (SELECT statement)
ORDER BY forces the output of the one or more queries to emerge in a particular
sequence.

The ORDER BY clause sorts the output. The rows are sorted according to the values in
the columns listed here; the first column listed gets the highest priority, and the second
column determines the order within duplicate values of the first, the third within
duplicate values of the second, and so on. You can specify ASC (for ascending, the
default) or DESC (descending) independently for each column.

EXISTS subquery Evaluates to TRUE if the subquery produces any rows and FALSE
otherwise. It is never UNKNOWN. To be meaningful, this phrase
must use a correlated subquery.
GENESISsql Users Guide 38

Chapter 2 Genesis SQL Support SELECT
Character sets are sorted according to their collations. You can also use integers rather
than names to indicate columns. The integers refer to the placement of the column among
those in the output, so that the first column is indicated with a 1, the fifth with a 5, and so
on. If any output columns are unnamed, you must use a number.

Possibly Nondeterministic Queries
In some cases the same query can produce different output tables on different
implementations because of subtle implementation-dependent behaviors. Such queries
are called possibly nondeterministic queries. A query is possibly nondeterministic if any of
the following is true:

• It specifies DISTINCT and the datatype of at least one column of the source row
is character string.

• One column of the source rows is of a character string datatype and is used in
either the MIN or the MAX aggregate function.

• A character set column is used as a grouping column or in a UNION.

• A HAVING clause uses a character string column within a MIN or MAX
function.

• It uses UNION without specifying ALL.

Possibly nondeterministic queries cannot be used in constraints.

Examples
SELECT DEPT,AVG(SALARY) FROM STAFF
GROUP BY DEPT
GENESISsql Users Guide 39

Chapter 2 Genesis SQL Support SET OPTION
SET OPTION

Syntax
SET OPTION option param1 [param2]

Keywords & Parameters

Option Param1 Param2 Description

COMPSORT ON | OFF Set sort page compression (default
ON).

DATETIME [n] ‘string’ Allows the user to modify the
DATETIME formatting string. The
default is DD-MON-RR and the
maximum size for the string is 64
bytes. The user can define up to four
DATETIME formatting strings. These
are identified by the optional n
parameter (default: 0).

ERROR ON | OFF Sets internal error dumping.

EXPR ON | OFF Sets internal expression dumping.

HASH ON | OFF Sets internal hash dumping.

HEAPBLOCKSIZE bytes Allows the user to set the heap block
size used in allocating memory.
Larger sizes require less CPU
overhead but may result in excessive
memory usage.

The range is 0 to 1000000. Setting 0
means that the exact required size
will be used.

LOGFILE ‘filename’ Sets the name of the debugging
logfile.

MAXOPTLOOP count Sets the maximum number of loops
the optimizer will execute when
determining an access plan (default
unlimited).
GENESISsql Users Guide 40

Chapter 2 Genesis SQL Support SET OPTION
MERGESIZE records Sets the number of records used to
check for duplicates while processing
multiple OR operators, an IN or
UNION clause. The default is 1000.
Increase this value if you get a
“MERGESIZE overflow” error.

The maximum value is 500,000
however values over 100,000 will
likely cause performance
degradation. In this case, either
modify the query or use a value of 0
which reduces query optimization
but will improve performance.

MKEYOP ON | OFF Allows the user to control whether or
not to use multi-segment key
optimization (default ON).

OPTRETRY count Directs the optimizer to create count
alternate query plans. If TIMEOUT is
set and the timeout occurs, then the
next alternate query plan is used.

OPTIMIZE ON | OFF Allows the user to control whether or
not (default ON).

PLAN ON | OFF Sets query plan dumping.

PREOPT ON | OFF Allows the user to control whether or
not to use preoptimization (default
ON).

RECORD ON | OFF Sets internal tree dumping to a file.
The files are dumped in the cwd as
VTXn.zno and VTXn.zcu. These files
can be used by the zgen utility to
debug optimizer problems.

Option Param1 Param2 Description
GENESISsql Users Guide 41

Chapter 2 Genesis SQL Support SET OPTION
Use
This statement is used to set a number of options.

NOTE: Using Set Option closes any currently open cursors.

SORTPAGES totalpages mempages Allows the user to modify the
amount of disk and memory storage
used for sort operations. The
totalpages parameter is the total
number of 4096 byte pages to use and
mempages is the number of these
pages kept in memory.

totalpages must be greater than or
equal to mempages.

The default values are 10000 and
1000. The default values are fine for
most users. If you get a message
indicating that Virtual Memory has
been exceeded, then increase the
totalpages value.

SORTPAGESIZE page size The sort page size must be large
enough to hold at least one record.
The range is 4096 to 65535, the
default size is 8192.

TIMEOUT seconds The number of seconds to wait for
the first resultset record to return. If
no record is returned before the
timeout value and OPTRETRY is not
zero, then the next alternate plan is
executed and the timeout is restarted.
If OPTRETRY is not set or all plans
have been tried and the timeout
occurs, then a “Fetch timed out” error
is returned. Once the first record is
returned, the timeout is cancelled for
the rest of the query.

TMPINDEX ON | OFF Allow use of temporary indexes
(default OFF, SDMS only).

TRACE ON | OFF Sets internal trace dumping.

TREE ON | OFF Sets internal tree dumping.

XML ON | OFF Use XML when dumping tree.

Option Param1 Param2 Description
GENESISsql Users Guide 42

Chapter 2 Genesis SQL Support SET OPTION
Examples
SET OPTION SORT 8000 2000
SET OPTION DATETIME DD-MM-YYYY
SET OPTION LOGFILE mylogfile
SET OPTION ERROR ON
GENESISsql Users Guide 43

Chapter 2 Genesis SQL Support SET PASSWORD
SET PASSWORD

Syntax
SET PASSWORD new_password {old_password | FOR username}

Keywords & Parameters
new_password New password.

old_password Current password.

Use
This statement is used to change the currently connected user’s password. A DBA can
change another user’s password by specifying “FOR username”. If the new_password is
not enclosed in double quotes, then it will be uppercased and connections must present it
uppercased. Double quoted passwords are used literally and can contain non-indentifier
characters except for “:”.

Examples
SET PASSWORD newpass FOR otheruser
SET PASSWORD newpass oldpass
SET PASSWORD “N@#eWpas%” oldpass
GENESISsql Users Guide 44

Chapter 2 Genesis SQL Support UPDATE
UPDATE
Changes the data in a table.

Syntax
UPDATE table_name (correlation_name)
 SET column_name = {expression | NULL}
 (column_name = {expression | NULL})
 ((column_name,...) = (subquery)) ...
 (WHERE search_condition)

Keywords & Parameters
table_name The name of an existing table that you can access. May include the

owner’s name, if it is not you. For example, owner.table.

correlation_nameAlso called an alias. Used to relabel the name of the reference in other
clauses in the statement.

column_name A column within the table. Parentheses are only required if the column
list contains more than one column.

expression The operation or function to execute on the specified column_names.

search_condition A valid condition that evaluates to TRUE, FALSE, or UNKNOWN.

subquery A query that returns only one row with as many columns as
column_names in the target set.

Use
This statement changes one or more column values in an existing row of a table. The
table may be a base table or view. You can set any number of columns to values and
follow the whole column_name = value_expression clause with a comma if there is another
such to follow. As an alternative to an explicit value, you can set the column to NULL.

You can use the value_expression to refer to the current values in the table being updated.
Any such references refer to the values of all of the columns before any of them were
updated. This allows you to do such things as double all column values (if numeric) by
specifying

column_name = column_name * 2

You can also swap values between columns. Value expressions also can use subqueries.

The UPDATE is applied to all rows that fulfill the WHERE clause, which is one of two
types. The WHERE predicate form is like the WHERE predicate clause in the SELECT
statement; it uses an expression that can be TRUE, FALSE or UNKNOWN for each row
of the table to be updated, and the UPDATE is performed wherever it is TRUE.

Be careful of omitting the WHERE clause; if you do, the UPDATE is performed on every
row in the table. You can use the WHERE CURRENT OF form in static or dynamic SQL if
the cursor direction is updatable (in other words, not through views) and provided the
target table is open and positioned on a row. The UPDATE is applied to the row on
GENESISsql Users Guide 45

Chapter 2 Genesis SQL Support UPDATE
which it is positioned. When using WHERE CURRENT OF in dynamic SQL, you can
omit the table name from the UPDATE clause; the table in the cursor is implied.

In either case, for the UPDATE to be successful, the following conditions must be met:

• The statement issuer must have the UPDATE privilege on each column of the
table being set.

• If the target table is a view, it must be updatable.

• If the current transaction is read-only, the target table must be temporary.

• If the UPDATE is done through a cursor that specifies ORDER BY, it may not set
the values of any columns specified in the ORDER BY clause.

• If the target table is a view, the value_expression in the SET clause must not,
directly, or though views, reference its leaf-underlying table (the base table
where the data ultimately resides).

• The value_expression may not use aggregate functions except in subqueries.

• Each column of the target table can only be altered once by the same UPDATE
statement.

• If the UPDATE is on a cursor that specified FOR UPDATE, each column being set
must have been specified or implied by that FOR UPDATE.

• If the UPDATE is made through a view, it may be constrained by a WITH
CHECK OPTION clause.

Example
The following statement updates every salary in department 15:

UPDATE STAFF SET SALARY = SALARY * 1.10 WHERE DEPT = 15
UPDATE STAFF SET SALARY = SALARY * 1.10,

(COMM) = (SELECT max(COMM) from STAFF)
WHERE DEPT = 15
GENESISsql Users Guide 46

GENESISsql Users Guide

Chapter 3

Built-In Functions

GENESIS has a number of built-in functions that help you create your SQL statements.
You can use them in the select-list to modify the result table or in the WHERE clause to
limit the number of qualifying rows. They are also valid in INSERT/UPDATE/DELETE
statements.

NOTE: The LEFT and RIGHT built-in functions are also SQL keywords. You must enclose them
in {fn <LEFT | RIGHT>(parameters)}.

ABS
ABS(expr)

Returns the absolute value of the expr.

ASCII
ASCII(char)

Returns the integer value of char.

BITAND
BITAND(expr1,expr2)

Returns the bitand of expr1 and expr2.

BITOR
BITOR(expr1,expr2)

Returns the bitor of expr1 and expr2.

BITXOR
BITXOR(expr1,expr2)

Returns the bitxor of expr1 and expr2.
GENESISsql Users Guide 47

Chapter 3 Built-In Functions CASE
CASE

NOTE: The CASE expression is defined in the built-in functions chapter even though it is not
strictly a function.

CASE
 WHEN search-condition1 THEN result1
 ...
 WHEN search-conditionn THEN resultn
 ELSE resultx
END
All the resulti values must have comparable datatypes. The ELSE

resultx is optional and is set to ELSE NULL if not specified. The

search-conditions are in the form of
 operand operator operand
For example,
 CASE
 WHEN dept = ‘HQ’ THEN ‘Headquarters’
 WHEN dept = ‘FC’ THEN ‘Factory’
 ELSE ‘Somewhere else’
 END

A shorthand syntax is also permitted:
CASE valuet
 WHEN value1 THEN result1
 ...
 WHEN valuen THEN resultn
 ELSE resultx
END

CAST
CAST({ expr | NULL } AS { datatype })

Returns the expr or NULL as datatype. Valid datatypes are the same
as for the CONVERT() function as well as any valid datatypes used
in a CREATE TABLE statement. Note that no trunctation occurs if
you use the CREATE TABLE datatypes; any precision such as
varchar(n) is ignored.
GENESISsql Users Guide 48

Chapter 3 Built-In Functions CHAR_LENGTH
CHAR_LENGTH
CHAR_LENGTH(expr)

Returns the length of the character expression.

CHR
CHR(n)

Returns the character value of n.

CONCAT
CONCAT(char1,char2)

Returns the concatentation of char1 and char2.

CONVERT
CONVERT(expr1,datatype)

Returns the value of expr1 converted into datatype which is one of the following:

SQL_BIGINT

SQL_BINARY

SQL_BIT

SQL_CHAR

SQL_DATE

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_INTEGER

SQL_LONGVARBINARY

SQL_LONGVARCHAR

SQL_NUMERIC

SQL_REAL

SQL_SMALLINT

SQL_TIME

SQL_TIMESTAMP

SQL_TINYINT

SQL_VARBINARY

SQL_VARCHAR
GENESISsql Users Guide 49

Chapter 3 Built-In Functions CURDATE
CURDATE
CURDATE()

Returns the current date for every invocation.

CURDATE

Returns the current date when the statement started.

For example,

select curdate() cur_fnc,curdate cur_static from staff

may return different values for cur_fnc and cur_static. Also subsequent records may
return a different value for cur_fnc.

CURDATETIME
CURDATETIME()

Returns the current date and time for every invocation.

CURDATETIME

Returns the current date and time when the statement started.

See CURDATE for more details.

CURRENT_DATE
CURRENT_DATE()

Returns the current date for every invocation.

CURRENT_DATE

Returns the current date when the statement started.

See CURDATE for more details.

CURRENT_DATETIME
CURRENT_DATETIME()

Returns the current date and time for every invocation

CURRENT_DATETIME

Returns the current date and time when the statement started.

See CURDATE for more details.
GENESISsql Users Guide 50

Chapter 3 Built-In Functions CURRENT_TIME
CURRENT_TIME
CURRENT_TIME()

Returns the current time for every invocation.

CURRENT_TIME

Returns the current time when the statement started

See CURDATE for more details.

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP()

Returns the current timestamp including microseconds for every invocation.

CURRENT_TIMESTAMP

Returns the current timestamp including microseconds when the statement started.

See CURDATE for more details.

CURTIME
CURTIME()

Returns the current time for every invocation.

CURTIME

Returns the current time when the statement started.

See CURDATE for more details.
GENESISsql Users Guide 51

Chapter 3 Built-In Functions CURTIMESTAMP
CURTIMESTAMP
CURTIMESTAMP()

Returns the current timestamp including microseconds for every invocation.

CURTIMESTAMP

Returns the current timestamp including microseconds when the statement started.

See CURDATE for more details.

DATABASE
DATABASE()

Returns the name of the database.

DAYNAME
DAYNAME(expr)

Returns the name of the day of the week for the date specified by expr.

DECODE
DECODE(expr,value,result[,value,result]...,default)

Compares expr with each value and returns either the first matching value’s result
or the default value if no values match.

GREATEST
GREATEST(expr1,expr2[,...])

Returns the greatest value of the expressions. The returned datatype is based on the
datatype of the first expression.

HOUR
HOUR(expr)

Returns the hour for the datetime specified by expr.

IFNULL
IFNULL(expr1,expr2)

Returns expr2 if expr1 is NULL, otherwise it returns expr1.
GENESISsql Users Guide 52

Chapter 3 Built-In Functions INSTR
INSTR
INSTR(char1,char2[,n[,m]])

Returns the position of char2 within char1. If n is specified and positive, then the search
begins n chars into char1. If n is negative, then the search begins n chars from the end of
char1. If m is specified, then the mth occurrence of char2 in char1 is located. If char2 does
not exist within char1, then 0 is returned.

LCASE
LCASE(expr)

Returns the lowercase representation of expr.

LEAST
LEAST(expr1,expr2[,...])

Returns the least value of the expressions. The returned datatype is based on the
datatype of the first expression.

LEFT
LEFT(expr,n)

Returns the first n characters of expr.

LENGTH
LENGTH(expr)

Returns the length of the character representation of expr.

LOCATE
LOCATE(char1,char2[,n[,m]])

Returns the position of char1 within char2. If n is specified and positive, then the search
begins n chars into char2. If n is negative, then the search begins n chars from the end of
char2. If m is specified, then the mth occurrence of char1 in char2 is located. If char1 does
not exist within char2, then 0 is returned.

LTRIM
LTRIM(expr)

Returns the character representation of expr trimmed of leading blanks.

NOW
NOW()
GENESISsql Users Guide 53

Chapter 3 Built-In Functions NVL
Returns the current date and time for every invocation.

NOW

Returns the current date and time when the statement started.

NVL
NVL(expr1,expr2)

Returns expr2 if expr1 is NULL, otherwise it returns expr1.

POSITION
POSITION(char1 IN char2)

Returns the position of char1 within char2. If char1 does not exist within char2, then 0 is
returned.

REPLACE
REPLACE(char,from,to)

Returns a string where the instances of from in char are replaced with to.

REVERSE
REVERSE(char)

Returns a string where the characters in char are in reverse order.

RIGHT
RIGHT(expr,n)

Returns the last n characters of expr.

ROUND
ROUND(n[,m])

Returns the rounded value of n based on the value of m. If n is a numeric value, it can be
either positive or negative.

A positive value m specifies the digits to the right of the decimal point. A negative value m
specifies the digits to the left of the decimal point. If m is 0 or not specified, the value is
rounded at the decimal point.
GENESISsql Users Guide 54

Chapter 3 Built-In Functions RTRIM
If n is a date value, then m can be one of the following:

SCC,CC Century

SYYY, YYYY, YEAR, SYEAR, YYY, YY, Y Year

Q Quarter

MONTH, MON, MM Month

WW,W Start of Week

DDD,DD,J (default) Day

DAY, DY, D Nearest Sunday

HH, HH12, HH24 Hour

MI Minute

RTRIM
RTRIM(expr)

Returns the character representation of expr trimmed of trailing blanks.

SQRT
SQRT(n)

Returns the square root of n.

SUBSTR
SUBSTR(char,m[,n])

Returns a substring of char, beginning at position m for n characters. If you specify m=0,
the whole string is returned. If you specify a negative number, the function returns the
number of characters specified from the end of the string. If you don’t specify n, the
default is to return all characters starting from m.

SUBSTRING
SUBSTRING(char,m[,n])

See SUBSTR().

SYSDATE
SYSDATE()

Returns the current system date and time for every invocation.

SYSDATE
GENESISsql Users Guide 55

Chapter 3 Built-In Functions TO_CHAR
Returns the current system date and time when the statement started.

TO_CHAR
TO_CHAR(expr[,fmt])

Returns the character representation of expr based on the fmt string or the default for
expr’s datatype. If expr is already a character string, then expr is not converted.

If expr is a numeric value, then fmt can be:

% Percent sign at right of number.

$ Dollar sign at left of number.

B Display zero as blank.

0 Display leading zeros.

9 A digit position.

other Delimiting character (not leading)

The default mask is as many 9s as required for the number’s precision and scale.

If expr is a date value, then fmt can be:

YYYY Four digit year.

YY Two digit year.

RR Two digit year in another century.

MM Two digit month of year (01-12)

MON Three character month (all uppercase).

mon Three character month (all lowercase)

Mon Three character month (initial cap)

MONTH Fully named month (all uppercase)

month Fully named month (all lowercase)

Month Fully named month (initial cap)

DDD Three digit day of year (001-356)

DD Two digit day of month (01-31)

D Single digit day of week (1-7)

DY Three character day (all upper case)

dy Three character day (all lowercase)

Dy Three character day (initial cap)
GENESISsql Users Guide 56

Chapter 3 Built-In Functions TO_DATE
To add character extensions to the value that represent counting, such as ST, ND, RD, or
TH, simply add th to any uppercase digit mask. The function correctly interprets the
extension based on the last digit and the case based on the mask’s case.

Put embedding characters that are valid masks inside double quotes (").

The default mask is DD-MON-YY.

TO_DATE
TO_DATE(expr[,fmt])

Returns the datetime representation of expr based on the fmt string or the default for
expr’s datatype. If expr is already a datetime, then the value is not converted.

The expr can be an integer or numeric value. If it is an integer value, it represents the
number of days since year 0. If expr is a numeric, then the integer portion represents the
number of days since year 0 and the fractional portion represents the part of the last day.

If expr is a char value, then fmt can be::

DAY Fully named day (all uppercase)

day Fully named day (all lowercase)

Day Fully named day (initial cap)

HH12 Two digit hour (00-11)

HH,HH24 Two digit hour (00-23)

MI Two digit minutes (00-59)

SS Two digit seconds (00-59)

SSSSS Seconds past midnight (0000-86399)

J Julian day

Q Single digit quarter of year (0-4)

W Single digit week of month (1-4). The week begins on Sunday.

WW Two digit week of year (01-52)

AM,PM Interpret hour value as AM or PM, respectively

other Delimiting character

YYYY Four digit year.

YY Two digit year.

RR Two digit year in another century.

MM Two digit month of year (01-12)

MON Three character month (all uppercase).

mon Three character month (all lowercase)
GENESISsql Users Guide 57

Chapter 3 Built-In Functions TO_NUMBER
TO_NUMBER
TO_NUMBER(expr[,fmt])

Returns the numeric representation of expr based on the fmt string or the default for
expr’s datatype.

If expr is already a numeric, then the value is not converted. If expr is a char value, then
fmt can be:

% Percent sign at right of number.

$ Dollar sign at left of number.

B Display zero as blank.

0 Display leading zeros.

9 A digit position.

other Delimiting character (not leading)

The default mask is as many 9s as required for the number’s precision and scale.

If expr is a date value, then the returned numeric represents the number of days since
year 0 and the portion of the last day.

TRANSLATE
TRANSLATE(char,from,to)

Returns char with all characters in from replaced with the corresponding ones in to. If
the number of characters in to is a multiple of the number of characters in from, for each
character in from, that multiple of characters from to replaces that single character. If to
is empty, all characters found in from are deleted.

Mon Three character month (initial cap)

DDD Three digit day of year (001-356)

DD Two digit day of month (01-31)

HH12 Two digit hour (00-11)

HH,HH24 Two digit hour (00-23)

MI Two digit minutes (00-59)

SS Two digit seconds (00-59)

SSSSS Seconds past midnight (0000-86399)

J Days since 1/1/1

AM,PM Interpret hour value as AM or PM, respectively

other Delimiting character
GENESISsql Users Guide 58

Chapter 3 Built-In Functions TRUNC
TRUNC
TRUNC(value)

Returns the truncated value. If value is of type datetime then the hours, minutes, and
seconds are set to zero. Otherwise it is treated as a number and the fractional part is
removed.

UCASE
UCASE(expr)

Returns the uppercase representation character representation of expr.

USER
USER()

Returns the username of the current connection.
GENESISsql Users Guide 59

GENESISsql Users Guide

Chapter 4

GENESIS Dictionary

Introduction
GENESISsql consists of two parts:

• The GENESISsql engine.

• The driver that communicates with the database.

You use GENESISsql to convert SQL statements from your client application into a
command structure that flat-file databases (typically called “legacy data sources”) can
understand.

The process begins when you issue SQL statements from the client. The GENESISsql
engine converts the SQL statements into discrete read and write operations and passes
them on to the database-specific driver. This driver, using a dictionary (also called
catalog) to map the translation, converts the engine’s read/write operations into
commands that the database understands. Then, the process is reversed when the
database sends data to the client.

This chapter describes the dictionary, the utility you can use to build and load the
dictionary, and a procedure for completing that task for each of the drivers on each
supported platform.

GENESIS dictionary
The GENESIS dictionary contains four required tables that describe the structure of the
flat file database and five optional tables that control access and views. The initial
structure of the first three tables, up to the comments field, is the same for all databases;
the fourth is the same for all. Some databases have fields beyond the comments field that
are used to further define the file structures. The dictionary itself is stored in the target
database.

• GENESIS_TABLES

• GENESIS_COLUMNS

• GENESIS_INDEXES

• GENESIS_XCOLUMNS

• GENESIS_AUTHS (optional)

• GENESIS_DEPENDS (optional)

• GENESIS_FORKEYS (optional)

• GENESIS_USERS (optional)

• GENESIS_VIEWS (optional)
GENESISsql Users Guide 60

Chapter 4 GENESIS Dictionary GENESIS dictionary
GENESIS_TABLES
This required table contains the definition for the relation. You can read and query the
following header fields, but not modify them.

T_DATABASE Database name.

T_OWNER Table owner.

T_NAME Table name.

T_TYPE Table type (S - System, T - User, V - View).

T_COMMENT Comments.

GENESIS_COLUMNS
This required table contains the columns for each entry in GENESIS_TABLES. You can
read and query the following header fields, but not modify them.

C_DATABASE Database name

C_OWNER Table owner

C_TABLE Table name

C_NAME Column name

C_POSITION Column position.

C_TYPE Column datatype

C_LENGTH Column length

C_PRECISION Column precision

C_SCALE Column scale

C_NULLS Column NULLS (Y/N)

C_COMMENT Comments.

GENESIS_INDEXES
This required table contains the indexes for each entry in GENESIS_TABLES. You can
read and query the following header fields, but not modify them. While you can define
as many indexes as you wish for a given table, GENESIS will only consider the first 15 in
alphabetical order, using I_DATABASE + I_OWNER + I_TABLE + I_NAME as the key.

I_DATABASE Database name

I_OWNER Table owner

I_TABLE Table name

I_NAME Index name
GENESISsql Users Guide 61

Chapter 4 GENESIS Dictionary GENESIS dictionary
GENESIS_XCOLUMNS
This required table contains the indexes for each entry in GENESIS_TABLES. You can
read and query the following header fields, but not modify them.

X_DATABASE Database name

X_OWNER Table owner

X_TABLE Table name

X_INDEX Index name

X_NAME Column name

X_POSITION Key column position

X_DIRECTION Key column direction (‘A’/’D’)

GENESIS_AUTHS
This optional table describes object privileges. The privileges are DELETE, INSERT,
SELECT, and UPDATE. PUBLIC tables bypass GENESIS_AUTHS checking.

A_USER User ID

A_DATABASE Database name

A_OWNER Object owner

A_TABLE Obejct name (Table or View)

A_SELECT Select authority (‘Y’/’N’)

A_INSERT Insert authority (‘Y’/’N’)

A_UPDATE Update authority (‘Y’/’N’)

A_DELETE Delete authority (‘Y’/’N’)

I_TYPE Unique (‘U’/’D’)

I_COMMENT Comments.
GENESISsql Users Guide 62

Chapter 4 GENESIS Dictionary GENESIS dictionary
GENESIS_DEPENDS
This optional table defines the view dependencies. You manage it with the CREATE
VIEW and DROP VIEW SQL commands.

D_DATABASE Database name

D_OWNER View owner

D_NAME View name

D_DATABASE2 Database name

D_OWNER2 View owner

D_NAME2 View/table name
GENESISsql Users Guide 63

Chapter 4 GENESIS Dictionary GENESIS dictionary
GENESIS_FORKEYS
This optional table defines the foreign key dependencies. You manage it with direct SQL
or via the catalog management program.

F_F_DATABASE Foreign key table database name

F_F_OWNER Foreign key table owner name

F_F_TABLE Foreign key table name

F_F_COLUMN Foreign key column name

F_P_DATABASE Primary key table database name

F_P_OWNER Primary key table owner name

F_P_TABLE Primary key table name

F_P_COLUMN Primarh key column name

F_SEQ Rule sequence number

F_UPDRULE Update rule

F_DELRULE Delete rule

F_P_NAME Primary key name

F_F_NAME Foreign key name

GENESIS_USERS
This optional table describes user privileges. You use it to control access to the database
with the GRANT and REVOKE SQL commands. The password is encoded using a
SHA512 encoding scheme.

U_NAME User ID

U_PASSWORD User password

U_DBA DBA authority (‘Y’/’N’)

U_CONNECT Connect authority (‘Y’/’N’)

U_RESOURCES Resource authority (‘Y’/’N’)

GENESIS_VIEWS
This optional table defines the views. You manage it with the CREATE VIEW and DROP
VIEW SQL commands.

V_DATABASE Database name

V_OWNER View owner

V_NAME View name
GENESISsql Users Guide 64

Chapter 4 GENESIS Dictionary Drivers by Type
Drivers by Type
The following chapters describe the steps you take to create a sample table definition for
each of the supported data sources:

• ADABAS C

• Synergex

• AcuCobol Vision

• OpenVMS RMS

• DesignVision Lists

These low-level translators take commands from the GENESISsql engine and turn them
into database-specific controls so that you have access to your “legacy” data from any
SQL application.

The instructions assume that VORTEX is installed and working at your site and
GENESISsql resides on your database server machine.

Briefly summarized the steps for creating and loading table definitions are:

1. Create data source file.

2. Create dicitonary file(s).

3. Initialize dictionary and load GENESIS tables.

4. Build user table definitions.

5. Load user table definitions.

V_SEQ View text sequence number

V_TEXT View text
GENESISsql Users Guide 65

GENESISsql Users Guide

Chapter 5

ADABAS C Driver

Introduction
The GENESIS ADABAS C driver, available on Windows, UNIX, OpenVMS and MVS,
uses direct ADABAS C calls to provide very high performance with SQL access.

This section explains how you create and load sample table definitions. It assumes that
VORTEX, GENESISsql, and the driver have all been installed according to the
instructions for your platform.

The sample instructions use the following values. You must replace them with the correct
values for your site.

• dbid = 235

• file = 20

Creating the Dictionary File
First, you must create an ADABAS C dictionary file for the GENESIS dictionary tables.
This dictionary contains the tables that the driver consults for mapping instructions.

1. Find the gds6init.fdu in your distribution (in the lib directory under
$GENESIS_HOME).

2. Modify the dbid and file so they have the values appropriate for your site. For
example:

dbid = 235
file = 20

Use the ADABAS adarep utility to find an unused file number. For example,

adarep db=235 contents

displays a list of the currently used file numbers. Once you have modified the
gds6init.fdu file, you run the ADABAS C adafdu utility to create the ADABAS C
file.

All the GENESIS dictionary tables are stored in one ADABASC file. Thus, each record (or
row) contains columns for every column in every table but only data for the columns for
one table. The columns for other tables in that record are null.

NOTE: Using any other tools, such as Software AG’s NATURAL, to manipulate the GENESIS
tables is likely to corrupt the entire GENESIS dictionary.
GENESISsql Users Guide 66

Chapter 5 ADABAS C Driver Creating the Dictionary File
Unix

C shell
1. Type setenv FDUFDT $GENESIS_HOME/lib/gds6init.fdt

2. Type adafdu < gds6init.fdu

Bourne shell
Create the dictionary file by

1. Type FDUFDT=$GENESIS_HOME/lib/gds6init.fdt

2. Type export FDUFDT

3. Type adafdu < gds6init.fdu

Windows
Create the dictionary file by

1. Type set FDUFDT=gds6init.fdt

2. Type adafdu < gds6init.fdu

OpenVMS
Create the dictionary file by

1. Type set def GENESIS_HOME:[lib]

2. Type def FDUFDT gds6init.fdt

3. Type def sys$input gds6init.fdu

4. Type adafdu

5. Type deassign sys$input

MVS
To create the ADABAS dictionary file on MVS, modify the LODCATLG JCL in the JOBS
dataset of your distribution:

…
//DDCARD DD *
ADARUN PROG=ADALOD,MODE=MULTI,SVC=237,DEVICE=3380,DBID=235
/* (Correct DBID)
//DDKARTE DD *
ADALOD LOAD FILE=20 <== Correct file
ADALOD NAME=’GENESIS-CATALOG’
ADALOD MAXISN=2000,DSSIZE=20B,NISIZE=20B,UISIZE=20B
ADALOD ISNREUSE=YES,DSREUSE=YES
ADALOD TEMPSIZE=15,SORTSIZE=15
GENESISsql Users Guide 67

Chapter 5 ADABAS C Driver Creating the Dictionary File
☞ Creating the data source file

The data source file tells the driver which ADABAS C database and dictionary file to use.
You create this file with a text editor. Be sure to put it in the $GENESIS_HOME directory.

You must include entries for database and dictionary. Five other entries, four related to
logging, are optional:

Keyword Format Description

database integer (Required) ADABAS C database number

dictionary integer (Required) ADABAS C dictionary file number

fast_count yes/no Use L9 command to return table row count instead of
fetching every record. The first table index is used and if
this key contains NULL values, the count will be incorrect.

logfile string Fully-qualified logfile name. For MVS, this must include the
high-level qualifier.

logformat string File format (MVS only). Please refer to the “IBM C/C++
Runtime Library Reference”, fopen() section.

loglevel integer Decimal value of one or more of the following hexadecimal
values added together:
0x01 - Messages
0x02 - Errors
0x04 - Command timing
0x08 - Data dumping
0x10 - Data conversions
0x20 - ADABAS control block
0x40 - GENESIS catalogs
For example, if you want to log Messages and Errors, set
loglevel 3

logmulti yes/no yes - generate a unique logfile name suffix.

readonly yes/no yes - disallow any database modifications.

☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS ADABAS C dictionary using the
Data Dictionary Utility, gds6init. This creates the GENESIS dictionary tables and
loads their own definitions into the GENESIS dictionary.

Unix, Windows, and OpenVMS
1. Type gds6init data_source_file -i
GENESISsql Users Guide 68

Chapter 5 ADABAS C Driver Creating the Dictionary File
MVS
1. Edit the GDS6INIT job in the JOBS dataset of your distribution to match your

installation, specifically the AFILE card:

//GDS6INIT JOB ADA,CLASS=A,MSGCLASS=X
//INITCAT EXEC GDS6PROC,
// AFILE='DB235 -I',
// ROPTS='ENVAR(_CEE_ENVFILE=DD:EV)'
//GDS6INIT.EV DD DISP=SHR,DSN=TRIFOX.LIB(ENVFILE) ENVIRONMENT VARS
//GDS6INIT.DDCARD DD DISP=SHR,DSN=TRIFOX.JOBS(ADARUN) ADARUN CARDS
//

NOTE: The AFILE parameter “DB235” must match the name of the data source file that you
created in the previous step. The “-I” means initialization.

2. Edit WDD6PROC JCL to match your installation, specifically the ADABAS LOADLIB
definition:

//*
//* INITIALIZE AND MAINTAIN GENESIS CATALOG
//*
//GDS6PROC PROC AFILE=, < INPUT ... REQUIRED
// ROPTS= < RUNTIME OPTIONS
//*---
//* GSD6INIT STEP
//*---
//GDS6INIT EXEC PGM=GDS6INIT,
// PARM='&ROPTS/&AFILE'
//STEPLIB DD DISP=SHR,DSN=TRIFOX.LOAD
// DD DISP=SHR,DSN=SAG.ADA622.LOAD ADABAS LOADLIB
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//DDCARD DD DUMMY
//EV DD DUMMY
//

3. Submit the GDS6INIT job.

☞ Building and loading user table definitions

There are three steps to loading your existing ADABAS file definitions into the GENESIS
dictionary. Each of these steps uses a utility program:
GENESISsql Users Guide 69

Chapter 5 ADABAS C Driver Creating the Dictionary File
1. Create the synonym file (gds6syn)

2. Create the gds6init input file (gds6fdt)

3. Insert the table definitions in to the dictionary (gds6init)

Building the synonym file
The first step is to create a synonym file which provides a descriptive SQL name to the
ADABAS two character shortnames. While it is not strictly necessary to do this, it will
make your SQL statements much more understandable.

There are two ways to build the synonym file. The first is to simply use a text editor and
the other is to use the gds6syn utility.

NOTE: The gds6syn utility is not yet available on MVS however it can be run on a supported
operating system and its output transferred back to MVS. Please contact Trifox support
if you want to do this.

 The gds6syn utility reads a Natural DDM file and extracts the tablename and column
definitions from it. The syntax is

gds6syn <DDMfile> <synfile> [owner [table]]

where owner is the SQL owner of the table and table is the SQL name of the table. The
owner defaults to PUBLIC and the tablename defaults to the name given in the DDM file
header. These defaults are usually fine for most applications.

The format of the synonym file is as follows:

OWNER
TABLE
shortname,synonym[,keyword]
...

The possible keywords are:

Keyword Description

DATE A DATE field with a P4 decimal.

FKEY A foreign key field for defining PE and/or MU subtables

READONLY Specifies a read-only field

SCALE=n Define the scale of a numeric value.

SKIP Skip this field when building the gds6fdt output file.

TIMESTAMP A TIMESTAMP field with a P7 decimal

Date and Timestamp
The ADABAS C GENESIS driver needs to know the field type for date and timestamp
information so it can correctly map those datatypes between the fields and the client
applications. Since ADABAS C users have historically used packed decimal fields to store
GENESISsql Users Guide 70

Chapter 5 ADABAS C Driver Creating the Dictionary File
date and timestamp information the corresponding keywords use this type as the
default.

Fkey
The ADABAS C GENESIS driver needs to know which field(s) to use when looking up a
particular MU or PE occurrence. The FKEY keyword marks those fields as being part of
the key used to identify the correct record.

Readonly
Readonly fields are those that cannot be updated. Typically these are used for
superdescriptors that use partial fields. SQL does not have a standard method for
specifying partial fields in predicate clauses. By marking a field as readonly, the
gds6fdt utility will create a field that cannot be updated but can be used to specify an
indexed lookup.

Scale
As there is no scale information stored in the ADABAS fdt, the user must tell GENESIS
what scale to use for packed and unpacked numbers.

Skip
This tells the gds6fdt utility to skip this field when building the output file. You can
accomplish the same thing by simply leaving the field out of the synonym file.

Because the Natural DDM does not have any information concerning these keywords, it
is necessary for the user to modify the gds6syn output. In our example, we will use the
VEHICLES file that comes with ADABAS. The Natural DDM for the VEHICLES file is
shown below:

0001DB: 000 FILE: 012 - VEHICLES DEFAULT SEQUENCE:
0002
0003T L DB Name F Leng S D Remark
0004- - -- -------------------------------- - ---- - - -----------------------
0005 1 AA REG-NUM A 15 N D LOCAL FORMAT
0006* LOCAL FORMAT
0007* CAR'S REGISTRATION NUMBER
0008 1 AB CHASSIS-NUM B 4 F NUMERIC
0009* NUMERIC
0010* UNIQUE MANIFACTURER NO FOR C
0011 1 AC PERSONNEL-ID A 8 D INTERN.
0012* INTERN.
0013* IDENTIFIER OF CAR USER/OWNER
0014G 1 CD CAR-DETAILS 0 LOCAL/GENERIC
0015 HD=CAR DETAILS
0016* LOCAL/GENERIC
0017* DESCRIPTION OF THE CAR
0018 2 AD MAKE A 20 N D LOCAL/GENERIC
0019* LOCAL/GENERIC
0020* NAME OF CAR MAKE/MANUFACTURE
0021 2 AE MODEL A 20 N LOCAL/GENERIC
0022* LOCAL/GENERIC
GENESISsql Users Guide 71

Chapter 5 ADABAS C Driver Creating the Dictionary File
0023* NAME OF CAR MODEL
0024 2 AF COLOR A 10 N D LOCAL/GENERIC
0025* LOCAL/GENERIC
0026* CAR MODEL'S COLOR NAME
0027 2 AF COLOUR A 10 N D LOCAL/GENERIC
0028* LOCAL/GENERIC
0029* CAR MODEL'S COLOR NAME
0030 1 AG YEAR N 4.0 N INTERN.
0031* INTERN.
0032* YEAR OF THE CAR'S MANUFACTUR
0033 1 AH CLASS A 1 F D INTERN.
0034* INTERN.
0035* CODE FOR OWNERSHIP (P/C)
0036 1 AI LEASE-PUR A 1 F INTERN.
0037* INTERN.
0038* CODE HOW CAR WAS AQUIRED
0039 1 AJ DATE-ACQ N 8.0 N INTERN.
0040* INTERN.
0041* DATE WHEN CAR WAS ACQUIRED
0042 1 AL CURR-CODE A 3 N INTERN.
0043* INTERN.
0044* CURRENCY OF MAINTENANCE COST
0045M 1 AM MAINT-COST P 7.0 N INTERN.
0046* INTERN.
0047* MAINTENANCE COST IN CURR.UNI
0048 1 AO MODEL-YEAR-MAKE A 24 S LOCAL/GENERIC
0049* LOCAL/GENERIC
0050* CAR MAKE + MODEL YEAR

Running

gds6syn vehicles.nsd vehicles.syn

creates the following synonym file:

PUBLIC
VEHICLES
AA,REG-NUM
AB,CHASSIS-NUM
AC,PERSONNEL-ID
AD,MAKE
AE,MODEL
AF,COLOUR
AG,YEAR
AH,CLASS
AI,LEASE-PUR
AJ,DATE-ACQ
AL,CURR-CODE
AM,MAINT-COST
AO,MODEL-YEAR-MAKE

To simplify this example, we will leave out the MU field, MAINT-COST, for the moment.
We will also change the “-” to “_” as “-’ is an invalid character for a SQL identifier. We
will also add the readonly attribute to the MODEL-YEAR-MAKE field. This produces
GENESISsql Users Guide 72

Chapter 5 ADABAS C Driver Creating the Dictionary File
PUBLIC
VEHICLES
AA,REG_NUM
AB,CHASSIS_NUM
AC,PERSONNEL_ID
AD,MAKE
AE,MODEL
AF,COLOUR
AG,YEAR
AH,CLASS
AI,LEASE_PUR
AJ,DATE_ACQ
AL,CURR_CODE
AM,MAINT_COST,SKIP
AO,MODEL_YEAR_MAKE,READONLY

As you can see, the synonym file could easily have been created by hand however the
gds6syn program creates a good starting point.

Building the gds6init input file
As with the synonym file, it is possible to build the gds6init input file by hand
however this is a laborious process and must be perfect otherwise the ADABAS driver
will most likely fail. For these reasons, it is better to use the gds6fdt utility.

The gds6fdt utility reads the FDT information directly from the ADABAS C file. It also
uses an optional synonym file to insert descriptive column and index names in place of
the two character ADABAS shortnames.

 The syntax is

gds6fdt <datasource file> <fnum> [-p password] [outfile] [synfile]

where datasource file is the name of the file you created on page 68, fnum is the ADABAS
file number, password is the ADABAS file password if any, outfile is the name of the
gds6fdt output file (default is infnum) and synfile is the name of the synonym file.

Continuing with the VEHICLES file, the following command will create the gds6init
input file:

gds6fdt data_source_file 12 vehicles.in vehicles.syn

For MVS systems, use the following procedure:

1. Modify the GDS6FDT JCL in the JOBS dataset of your distribution:

//GDS6FDT JOB ADA,CLASS=A,MSGCLASS=X
//ADABAS EXEC GDS6FPRC,
// AFILE='DB235 12',
// ROPTS='ENVAR(_CEE_ENVFILE=DD:EV)'
//GDS6FDT.EV DD DISP=SHR,DSN=TRIFOX.LIB(ENVFILE) ENVIRONMENT VARS
//GDS6FDT.DDCARD DD DISP=SHR,DSN=TRIFOX.JOBS(ADARUN) ADARUN CARDS
//GDS6FDT.GDS6FSYN DD DISP=SHR,DSN=TRIFOX.MISC(VEHCLSYN)
//GDS6FDT.GDS6FOUT DD DISP=SHR,DSN=TRIFOX.MISC(VEHCLIN)
//
GENESISsql Users Guide 73

Chapter 5 ADABAS C Driver Creating the Dictionary File
2. Modify the GDS6FPRC JCL in the JOBS dataset of your distribution making sure that
the ADABAS LOADLIB is properly defined:

.

.

.
//*
//* GENERATE GENESIS DD CARDS FROM ADABAS FDT
//*
//GDS6FPRC PROC AFILE=, < INPUT ... REQUIRED
// ROPTS= < RUNTIME OPTIONS
//*---
//* GDS6FDT STEP
//*---
//GDS6FDT EXEC PGM=GDS6FDT,
// PARM='&ROPTS/&AFILE'
//STEPLIB DD DISP=SHR,DSN=TRIFOX.LOAD
// DD DISP=SHR,DSN=SAG.ADA622.LOAD ADABAS LOADLIB
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//GDS6FSYN DD DUMMY
//GDS6FOUT DD DUMMY
//DDCARD DD DUMMY
//EV DD DUMMY
//

3. Submit the GDS6FDT job. It creates the output file, VEHCLIN.

The output from gds6fdt looks like this:

; Input file machine generated
; GENESIS ADABAS C FDT Utility
; 1.0.13
TABLES
,PUBLIC,VEHICLES,T,0,12,12,,0,,0
COLUMNS
,PUBLIC,VEHICLES, REG_NUM, 1,1,15,15,0,Y,0,AA,0,0
,PUBLIC,VEHICLES, CHASSIS_NUM, 2,99, 4, 4,0,Y,0,AB,0,0
,PUBLIC,VEHICLES, PERSONNEL_ID, 3,1, 8, 8,0,Y,0,AC,0,0
,PUBLIC,VEHICLES, MAKE, 4,1,20,20,0,Y,0,AD,0,0
,PUBLIC,VEHICLES, MODEL, 5,1,20,20,0,Y,0,AE,0,0
,PUBLIC,VEHICLES, COLOUR, 6,1,10,10,0,Y,0,AF,0,0
,PUBLIC,VEHICLES, YEAR, 7,5, 4, 4,0,Y,0,AG,0,0
,PUBLIC,VEHICLES, CLASS, 8,1, 1, 1,0,Y,0,AH,0,0
,PUBLIC,VEHICLES, LEASE_PUR, 9,1, 1, 1,0,Y,0,AI,0,0
,PUBLIC,VEHICLES, DATE_ACQ,10,5, 8, 8,0,Y,0,AJ,0,0
,PUBLIC,VEHICLES, CURR_CODE,11,1, 3, 3,0,Y,0,AL,0,0
,PUBLIC,VEHICLES,TRIFOX_RO_FLD_0,12,99,22,22,0,Y,0,AO,16,0
INDEXES
,PUBLIC,VEHICLES, TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,VEHICLES, TRIFOX3,D,0,1,AC,0,0,0
,PUBLIC,VEHICLES, TRIFOX4,D,0,1,AD,0,0,0
,PUBLIC,VEHICLES, TRIFOX6,D,0,1,AF,0,0,0
,PUBLIC,VEHICLES, TRIFOX8,D,0,1,AH,0,0,0
,PUBLIC,VEHICLES,MODEL_YEAR_MAKE,D,0,1,AO,0,0,0
XCOLUMNS
GENESISsql Users Guide 74

Chapter 5 ADABAS C Driver Creating the Dictionary File
,PUBLIC,VEHICLES, TRIFOX1, REG_NUM,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX3, PERSONNEL_ID,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX4, MAKE,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX6, COLOUR,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX8, CLASS,0,A,0,0
,PUBLIC,VEHICLES,MODEL_YEAR_MAKE,TRIFOX_RO_FLD_0,0,A,0,0

NOTE: The VEHICLES table is defined slightly differently on various ADABAS platforms so
your file may differ from this one.

There are four distinct sections in the gds6fdt output file: TABLES, COLUMNS,
INDEXES and XCOLUMNS. These correspond to the GENESIS_TABLES,
GENESIS_COLUMNS, GENESIS_INDEXES and GENESIS_XCOLUMNS tables in the
GENESIS dictionary. The entries are described in the following section. While it is highly
unlikely that you will ever modify the output file, the definitions are included for your
information.

User table description
The TABLES section, which only has one line in our example, contains entries for
GENESIS_TABLES in the format:

T_Database Database name (none)

T_Owner Table owner (PUBLIC)

T_Name Table name (VEHICLES)

T_Type Table type (T)

T_Comment Comment (0)

Columns column count (12)

Filenum ADABAS file number (12)

PEname PE group name for this table (none)

PE/MU count Count of PE and MU entries (0)

Password ADABAS C file password (0)

Internal checksum (automatically calculated) (0)

The COLUMNS section shows a line for each of the columns as specified in the TABLES
section. It contains the entries for GENESIS_COLUMNS in the format (the examples in
parentheses are for the first column only):

C_Database Database name (none)

C_Owner Table owner (PUBLIC)

C_Table Table name (VEHICLES)

C_Name Column name (REGNUM)
GENESISsql Users Guide 75

Chapter 5 ADABAS C Driver Creating the Dictionary File

ADABAS C type/length
(Description) GENESIS type Precision/Scale

U / len (unpacked) 5 len / User defined

P / len (packed) 4 (2 * len -1) User defined

P / 4 (date) 12 7 / 4

P / 7 (timestamp) 12 13 / 7

G / len (float) 8 (2 * len) / 2

F / 1 (integer) 0 3 / 0

F / 2 (integer) 0 5 / 0

F / 4 (integer) 0 10 / 0

C_Sequence One-based column sequence number (1)

C_Datatype Column datatype (1)

ADABAS C type GENESIS type

A 1

U 5

B 99

P 4

G 8

F 0

C_Length Column length (15)

C_Precision Precision (15)

C_Scale Scale (0)

C_Nulls Nulls allowed (‘Y’/’N’) (Y)

C_Comment Comment (0)

ADABAS name ADABAS short name (AA).

You can optionally provide a length and data type override separated
by “/” (a slash) up to 10 bytes long (for example, ID/2/F). If you
choose this method, however, make sure the datatype, length,
precision, and scale entries match the remapping. See “Periodic Groups
and Multivalue fields” on page 80.
GENESISsql Users Guide 76

Chapter 5 ADABAS C Driver Creating the Dictionary File

The INDEXES section contains entries for GENESIS_INDEXES in the format:

I_Database Database name (none)

I_Owner Table owner (PUBLIC)

I_Table Table name (VEHICLES)

I_Index Index name (TRIFOX1)

I_Type ‘U’ — unique, ‘D’ — duplicates (U)

I_Comment Comment

Columns Column count (1)

ADABAS name ADABAS short name (AA)

Options Index options(0) (Used by ODBC catalog functions)

Keynum Key number(0) (Used by ODBC catalog functions)

internal checksum (automatically calculated)

The XCOLUMNS section contains entries for GENESIS_XCOLUMNS in the format:

Flag Column flags. If you don’t use a flag, then zero is assumed. The flags
column has one or more of the following values OR’d as necessary:

Description Decimal Value

Foreign key 1

Sequence number 2

MU field 4

PE field 8

Read-only field 16

Nulls & Nulls allowed (’Y’/’N’) Y

Internal checksum (automatically calculated) (0)

X_Database Database name (none)

X_Owner Table owner (PUBLIC)

X_Table Table name (VEHICLES)

X_Index Index name (TRIFOX1)

X_Name Column name (REGNUM)

X_Position Column index position, zero-based (0)

X_Direction ‘A’ - ascending, ‘D’ - descending (A)
GENESISsql Users Guide 77

Chapter 5 ADABAS C Driver Creating the Dictionary File
☞ Loading the dictionary

You are now ready to load the table definition into the GENESIS catalog.

Unix, Windows, and OpenVMS
Type gds6init data_source_file -avehicles.in

MVS
Edit the GDS6ADD job in the JOBS dataset of your distribution, specifically the AFILE
card. Make sure that it is refering to the data source file that you created earlier (DB235 is
just an example):

//GDS6ADD JOB ADA,CLASS=A,MSGCLASS=X
//STAFF EXEC GDS6PROC,
// AFILE='DB235 -A''''TRIFOX.MISC(VEHCLIN)''''',
// ROPTS='ENVAR(_CEE_ENVFILE=DD:EV)'
//GSD6INIT.EV DD DISP=SHR,DSN=TRIFOX.LIB(ENVFILE) ENVIRONMENT VARS
//GDS6INIT.DDCARD DD DISP=SHR,DSN=TRIFOX.JOBS(ADARUN) ADARUN CARDS
//

The procedure is now complete. You can now connect to the GENESIS database and
query the VEHICLES table!

☞ Deleting table definitions

If you make a mistake or simply want to delete a table definition, you can use either SQL
or gds6init to do so. If your GENESIS database is up and you can connect, simply use the
“DROP TABLE <owner>.<table>” command from whatever client access method you are
using to drop the definitions. Using this SQL command does NOT delete the actual data
stored in the ADABAS C file; it merely removes the GENESIS catalog definitions related
to the table.

If your definition is incorrect or you cannot connect with a client method, use the
gds6init -d option to drop the table definition. For example, to drop the definitions for
the PUBLIC.VEHICLES table, type

gds6init data_source_file -d.PUBLIC.VEHICLES

You can specify database.owner.tablename for the target. You must however include the
“.” separator even if you omit the value.

Filler Not used (0)

Internal checksum (automatically calculated)
GENESISsql Users Guide 78

Chapter 5 ADABAS C Driver Customization
Customization
Some ADABAS C concepts do not translate easily into SQL. If you want to use any of
them, including packed decimal Date and Timestamp fields, super/sub descriptor
columns, or PE/MU fields, you must either modify the gds6init input files as
described in this section or specify the correct synonym file for gds6fdt.

Date and Timestamp fields
NATURAL programmers have traditionally stored date and timestamp data in packed
decimal fields. To correctly convert these to SQL datetime fields, you must modify the
GENESIS ADABAS C Data Dictionary Utility input file.

For the following ADABAS C file:

1, DT, 4, P ; DATE
1, TI, 7, P ; TIME

The correct description entries are:

,PUBLIC,TIMEDATE,DATEFIELD,1,12,7,4,4,Y,0,DT,0,0
,PUBLIC,TIMEDATE,TIMEFIELD,2,12,7,7,7,Y,0,TI,0,0

The datatype (the 5th field) is set to 12 which tells GENESIS that this is a datetime field
and the length is 7. For a Date field, the precision is 6 and the scale is 4. For a Timestamp
field, the precision is 13 and the scale is 7.

NOTE: The gds6fdt utility automates this definition process for you if you give it the
appropriate synonym files, i.e. use the DATE and TIMESTAMP keywords. It is
recommended that you use the gds6fdt utility to define your DATE and TIMESTAMP
fields rather than attempting this manually. The ADABAS C GENESIS driver is very
sensitive to the accuracy of the GENESIS catalog. Errors in setting up these tables will
most likely result in driver failure.

Read-only fields
Read-only fields enable you to use descriptor values that are made up of partial pieces of
fields. SQL does not readily support such indexes. To use them, create a read-only field
for the super/sub-descriptor and use it for passing in search criteria. Assume that the
super/sub-descriptor is IX and consists of parts of the alphanumeric partnumber and
color fields:

IX=PN(5,10),CO(2,4)

Create a GENESIS_COLUMNS entry as follows:

.

.

.
,PUBLIC,INVENTORY,PNUMCOLOR,11,1,7,0,0,Y,0,IX,16,0

Remember to increment the GENESIS_TABLES record’s column count. Then create
GENESIS_INDEXES and GENESIS_XCOLUMNS entries as follows:
GENESISsql Users Guide 79

Chapter 5 ADABAS C Driver Customization
,PUBLIC,INVENTORY,RDINDEX,D,,1,IX,0
,PUBLIC,INVENTORY,RDINDEX,PNUMCOLOR,1,A,0,0

Now you can use a SQL statement such as

SELECT PARTNUMBER,COLOR,SIZE,QUANTITY
from INVENTORY where PNUMCOLOR = ’BD67RED’

and the GENESIS optimizer will use the IX descriptor to find the correct record(s). If the
various pieces of the super/sub-descriptor are not all alphanumeric, then you must set
the column datatype to 99 (binary) instead of 1.

NOTE: The gds6fdt utility automates this definition process for you if you give it the
appropriate synonym files, i.e. use the READONLY keyword. It is recommended that
you use the gds6fdt utility to define your READONLY fields rather than attempting
this manually. Please refer to the synonym file example on page 72. The ADABAS C
GENESIS driver is very sensitive to the accuracy of the GENESIS catalog. Errors in
setting up these tables will most likely result in driver failure.

Periodic Groups and Multivalue fields
SQL does not support the concept of an array field. GENESISsql treats Periodic Groups
(PE) and Multivalue (MU) fields as separate tables connected to the “main” table with a
primary key. A record with MU fields would use two tables, the main one and the MU
sub-table, as would a record with a PE group of fields. A record with a PE group that
includes MU fields would use three tables - one main table, the PE group sub-table, and
the MU field’s sub-table, all connected via the same primary key.

 Consider the ADABAS VEHICLES demo file:

 1, AA, 15, A, DE,UQ,NU
 1, AB, 4, B, FI
 1, AC, 8, A, DE
 1, AD, 20, A, DE,NU
 1, AE, 20, A, NU
 1, AF, 10, A, DE,NU
 1, AG, 4, U, NU
 1, AH, 1, A, DE,FI
 1, AI, 1, A, FI
 1, AJ, 8, U, NU
 1, AL, 3, A, NU
 1, AM, 4, P, NU,MU
AO=AG(1,2),AD(1,20)

NOTE: Your FDT structure may be slightly different from this depending upon your
platform.

One way for SQL to represent the same data is with the following two tables:

VEHICLES REG_NUM, CHASSIS_NUM, PERSONNEL_ID,
MAKE, MODEL, COLOUR, YEAR, CLASS,
LEASE_PUR, DATE_ACQ, CURR_CODE
GENESISsql Users Guide 80

Chapter 5 ADABAS C Driver Customization
Each record of the ADABAS VEHICLES demo file has:

 Column name Number of occurences
 ============== =====================================
 REG_NUM 1 -- Primary key
 CHASSIS_NUM 1
 PERSONNEL_ID 1
 MAKE 1
 MODEL 1
 COLOUR 1
 YEAR 1
 CLASS 1
 LEASE_PUR 1
 DATE_ACQ 1
 CURR_CODE 1
 MAINT_COST 1 to n -- MU Field

The gds6fdt synonym files used to define the tables are:

PUBLIC
VEHICLES
AA,REG_NUM
AB,CHASSIS_NUM
AC,PERSONNEL_ID
AD,MAKE
AE,MODEL
AF,COLOUR
AG,YEAR
AH,CLASS
AI,LEASE_PUR
AJ,DATE_ACQ
AL,CURR_CODE
AM,MAINT_COST,SKIP
AO,MODEL_YEAR_MAKE,READONLY

PUBLIC
VEHICLES_MAINTENANCE
AA,REG_NUM,FKEY
AM,MAINT_COST

NOTE: In the case of PE sub-tables and MU sub-tables that are part of a parent PE table, the
PE group “field” is specified in the synonym file. If you do not do so, gds6fdt will exit
with an error. Also in each of the sub-tables, the foreign key and PE or MU fields are the
only fields in the synonym file. It is important that you do not include non-foreign key or
non-PE/MU fields in the sub-table definition. Doing so may cause unreliable results or
driver failure.

The GENESIS ADABAS C Data Dictionary Utility input file for these descriptions is
shown below. Note that you can specify several table definitions in one file:

VEHICLES_MAINTENANCE REG_NUM, MAINT_COST
GENESISsql Users Guide 81

Chapter 5 ADABAS C Driver Customization
TABLES
; Input file machine generated
; GENESIS ADABAS C FDT Utility
; 1.0.13
TABLES
,PUBLIC,VEHICLES,T,0,12,12,,0,,0
,PUBLIC,VEHICLES_MAINTENANCE,T,0,3,12,,1,,0
COLUMNS
,PUBLIC,VEHICLES, REG_NUM, 1,1,15,15,0,Y,0,AA,0,0
,PUBLIC,VEHICLES, CHASSIS_NUM, 2,99, 4, 4,0,Y,0,AB,0,0
,PUBLIC,VEHICLES, PERSONNEL_ID, 3,1, 8, 8,0,Y,0,AC,0,0
,PUBLIC,VEHICLES, MAKE, 4,1,20,20,0,Y,0,AD,0,0
,PUBLIC,VEHICLES, MODEL, 5,1,20,20,0,Y,0,AE,0,0
,PUBLIC,VEHICLES, COLOUR, 6,1,10,10,0,Y,0,AF,0,0
,PUBLIC,VEHICLES, YEAR, 7,5, 4, 4,0,Y,0,AG,0,0
,PUBLIC,VEHICLES, CLASS, 8,1, 1, 1,0,Y,0,AH,0,0
,PUBLIC,VEHICLES, LEASE_PUR, 9,1, 1, 1,0,Y,0,AI,0,0
,PUBLIC,VEHICLES, DATE_ACQ,10,5, 8, 8,0,Y,0,AJ,0,0
,PUBLIC,VEHICLES, CURR_CODE,11,1, 3, 3,0,Y,0,AL,0,0
,PUBLIC,VEHICLES,TRIFOX_RO_FLD_0,12,99,22,22,0,Y,0,AO,16,0
,PUBLIC,VEHICLES_MAINTENANCE, REG_NUM, 1,1,15,15,0,Y,0,AA,1,0
,PUBLIC,VEHICLES_MAINTENANCE, SEQNO1, 2,0, 4,10,0,N,0,,3,0
,PUBLIC,VEHICLES_MAINTENANCE,MAINT_COST, 3,4, 4, 7,0,Y,0,AM%d,4,0
INDEXES
,PUBLIC,VEHICLES, TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,VEHICLES, TRIFOX3,D,0,1,AC,0,0,0
,PUBLIC,VEHICLES, TRIFOX4,D,0,1,AD,0,0,0
,PUBLIC,VEHICLES, TRIFOX6,D,0,1,AF,0,0,0
,PUBLIC,VEHICLES, TRIFOX8,D,0,1,AH,0,0,0
,PUBLIC,VEHICLES,MODEL_YEAR_MAKE,D,0,1,AO,0,0,0
,PUBLIC,VEHICLES_MAINTENANCE,TRIFOX1,U,0,1,AA,0,0,0
XCOLUMNS
,PUBLIC,VEHICLES, TRIFOX1, REG_NUM,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX3, PERSONNEL_ID,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX4, MAKE,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX6, COLOUR,0,A,0,0
,PUBLIC,VEHICLES, TRIFOX8, CLASS,0,A,0,0
,PUBLIC,VEHICLES,MODEL_YEAR_MAKE,TRIFOX_RO_FLD_0,0,A,0,0
,PUBLIC,VEHICLES_MAINTENANCE,TRIFOX1,REG_NUM,0,A,0,0

NOTE: For MVS, the unique key field(s) can be descriptors or non-descriptors. For other
platforms, the unique key field(s) must be ADABAS C descriptors.

Individual occurrences of PE and MU fields must also be uniquely identified. The
pseudo-columns SEQNO1 and SEQNO2 identify which PE or MU instance is being
referenced. For example,

SELECT REG_NUM,SEQNO1,MAINT_COST FROM
VEHICLES_MAINTENANCE
WHERE REG_NUM = ‘DA-C 3371’

returns a set of rows with each maintenance cost entry preceded by its sequence number:

DA-C 3371 1 1288
DA-C 3371 2 322
GENESISsql Users Guide 82

Chapter 5 ADABAS C Driver Customization
DA-C 3371 3 899
DA-C 3371 4 33

Note the syntax of the ADABAS C shortname in the input file. You must end the
shortname for PE fields and MU fields that are not within a PE with %d. End MU fields
within a PE with a %d(%d) appended to the shortname. These markers are used to
identify the correct MU and PE instance.

The flag field in the GENESIS_COLUMNS record identifies the various important
columns in a MU or PE sub-table (please refer to the User Table Description section above
for the flag values).

The SEQNOn pseudo-columns are also considered foreign key fields, so their flag field is
0x01 | 0x02 or 3.

NOTE: The gds6fdt utility automates this definition process for you if you give it the
appropriate synonym files. It is recommended that you use the gds6fdt utility to build
your sub-tables rather than attempting this by hand. The ADABAS C GENESIS driver
is very sensitive to the accuracy of the GENESIS catalog and this is vital in the case of
PE and MU sub-tables. Errors in setting up these tables will most likely result in driver
failure.

Now you have two tables mapped onto the file. Use standard SQL join syntax to join the
two tables as necessary. You can use the SEQNOn pseudo-columns just like any other
column. Use the SEQNOx fields to insert and update the correct PE and MU fields. You
should use the main table as the “driver” for querying any subtables. This ensures that
you get the data returned in the expected order.

For a more complex example of MU and PE fields, consider the ADABAS EMPLOYEES
demo file:

; EMPLOYEES PE and MU example
 1, AA, 8, A, DE,UQ ; PERSONNEL_ID
 1, AB, ; FULL_NAME Group field
 2, AC, 20, A, NU ; FIRST_NAME
 2, AE, 20, A, DE ; NAME
 2, AD, 20, A, NU ; MIDDLE_NAME
 1, AF, 1, A, FI ; MAR_STAT
 1, AG, 1, A, FI ; SEX
 1, AH, 6, U, DE ; BIRTH
 1, A1, ; FULL_ADDRESS Group field
 2, AI, 20, A, MU,NU ; ADDRESS_LINE MU 1 - 6 occurences
 2, AJ, 20, A, DE,NU ; CITY
 2, AK, 10, A, NU ; ZIP
 2, AL, 3, A, NU ; COUNTRY
 1, A2, ; TELEPONE Group field
 2, AN, 6, A, NU ; AREA_CODE
 2, AM, 15, A, NU ; PHONE
 1, AO, 6, A, DE ; DEPT
 1, AP, 25, A, DE,NU ; JOB_TITLE
 1, AQ, PE ; INCOME PE 1 - 4 occurences
GENESISsql Users Guide 83

Chapter 5 ADABAS C Driver Customization
 2, AR, 3, A, NU ; CURR_CODE
 2, AS, 5, P, NU ; SALARY
 2, AT, 5, P, MU,NU ; BONUS MU 1 - 4 occurences
 1, A3, ; LEAVE_DATA Group field
 2, AU, 2, U, ; LEAVE_DUE
 2, AV, 2, U, NU ; LEAVE_TAKEN
 1, AW, PE ; LEAVE_BOOKED PE 1 - 4 occurences
 2, AX, 6, U, NU ; LEAVE_START
 2, AY, 6, U, NU ; LEAVE_END
 1, AZ, 3, A, DE,MU,NU ; LANG MU 1 - 4 occurences
H1=AU(1,2),AV=(1,2) ; LEAVE_LEFT Super descriptor
S1=AO(1,4) ; DEPARTMENT Sub descriptor
S2=AO(1,6),AE=(1,20) ; DEPT_PERSON Super descriptor
S3=AR(1,3),AS(1,9) ; CURRENCY_SALARY Super descriptor
PH=PHON(AE) ; PHON_NAME Phonetic descriptor
end

You can represent this data in SQL in six tables::

EMPLOYEES PERSONNEL_ID,FIRST_NAME,NAME,
MIDDLE_NAME, MAR_STAT,SEX,BIRTH,CITY,ZIP,
COUNTRY,AREA_CODE, PHONE,DEPT,
JOB_TITLE, LEAVE_DUE,LEAVE_TAKEN

EMPLOYEES_ADDRESS_LINE PERSONNEL_ID,SEQNO1,ADDRESS_LINE

EMPLOYEES_INCOME PERSONNEL_ID,SEQNO1,CURR_CODE,SALARY

EMPLOYEES_INCOME_BONUS PERSONNEL_ID,SEQNO1,SEQNO2,BONUS

EMPLOYEES_LEAVE_BOOKED PERSONNEL_ID,SEQNO1,LEAVE_START,
LEAVE_END

EMPLOYEES_LANG PERSONNEL_ID,SEQNO1,LANG

Each record of the ADABAS EMPLOYEES demo file has:

 Column name Number of occurences
 ============== =====================================
 PERSONNEL_ID 1 -- Primary key
 FIRST_NAME 1
 NAME 1
 MIDDLE_NAME 1
 MAR_STAT 1
 SEX 1
 BIRTH 1
 ADDRESS_LINE 1 to 6 -- MU Field
 CITY 1
 ZIP 1
 COUNTRY 1
 AREA_CODE 1
 PHONE 1
 DEPT 1
GENESISsql Users Guide 84

Chapter 5 ADABAS C Driver Customization
 JOB_TITLE 1
 INCOME 1 to 4 -- PE Group
 SALARY
 BONUS 1 to 4 -- MU Field within a PE group
 LEAVE_DUE 1
 LEAVE_TAKEN 1
 LEAVE_BOOKED 1 to 4 -- PE Group
 LEAVE_START
 LEAVE_END
 LANG 1 to 4 -- MU Field

The gds6fdt synonym files used to define the tables are:

PUBLIC
EMPLOYEES
AA,PERSONNEL_ID
AC,FIRST_NAME
AE,NAME
AD,MIDDLE_NAME
AF,MAR_STAT
AG,SEX
AH,BIRTH
AJ,CITY
AK,ZIP
AL,COUNTRY
AN,AREA_CODE
AM,PHONE
AO,DEPT
AP,JOB_TITLE
AU,LEAVE_DUE
AV,LEAVE_TAKEN

PUBLIC
EMPLOYEES_ADDRESS_LINE
AA,PERSONNEL_ID,FKEY
A1,GROUP
AI,ADDRESS_LINE

PUBLIC
EMPLOYEES_INCOME
AA,PERSONNEL_ID,FKEY
AQ,GROUP
AR,CURR_CODE
AS,SALARY

PUBLIC
EMPLOYEES_INCOME_BONUS
AA,PERSONNEL_ID,FKEY
AT,BONUS

PUBLIC
EMPLOYEES_LEAVE_BOOKED
AA,PERSONNEL_ID,FKEY
GENESISsql Users Guide 85

Chapter 5 ADABAS C Driver Customization
A3,GROUP
AX,LEAVE_START
AY,LEAVE_END

PUBLIC
EMPLOYEES_LANG
AA,PERSONNEL_ID,FKEY
AZ,LANG
The GENESIS ADABAS C Data Dictionary Utility input file for these descriptions is
shown below:

TABLES
,PUBLIC,EMPLOYEES,T,0,16,1,,0,0,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE,T,0,3,1,,1,0,0
,PUBLIC,EMPLOYEES_INCOME,T,0,4,1,AQ,1,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,T,0,4,1,AQ,2,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,T,0,4,1,AW,1,0,0
,PUBLIC,EMPLOYEES_LANG,T,0,3,1,,1,0,0
COLUMNS
,PUBLIC,EMPLOYEES, PERSONNEL_ID, 1,1, 8, 8,0,Y,0,AA,0,0
,PUBLIC,EMPLOYEES, FIRST_NAME, 2,1,20,20,0,Y,0,AC,0,0
,PUBLIC,EMPLOYEES, NAME, 3,1,20,20,0,Y,0,AE,0,0
,PUBLIC,EMPLOYEES, MIDDLE_NAME, 4,1,20,20,0,Y,0,AD,0,0
,PUBLIC,EMPLOYEES, MAR_STAT, 5,1, 1, 1,0,Y,0,AF,0,0
,PUBLIC,EMPLOYEES, SEX, 6,1, 1, 1,0,Y,0,AG,0,0
,PUBLIC,EMPLOYEES, BIRTH , 7,5, 6, 6,0,Y,0,AH,0,0
,PUBLIC,EMPLOYEES, CITY, 8,1,20,20,0,Y,0,AJ,0,0
,PUBLIC,EMPLOYEES, ZIP, 9,1,10,10,0,Y,0,AK,0,0
,PUBLIC,EMPLOYEES, COUNTRY,10,1, 3, 3,0,Y,0,AL,0,0
,PUBLIC,EMPLOYEES, AREA_CODE,11,1, 6, 6,0,Y,0,AN,0,0
,PUBLIC,EMPLOYEES, PHONE ,12,1,15,15,0,Y,0,AM,0,0
,PUBLIC,EMPLOYEES, DEPT,13,1, 6, 6,0,Y,0,AO,0,0
,PUBLIC,EMPLOYEES, JOB_TITLE,14,1,25,25,0,Y,0,AP,0,0
,PUBLIC,EMPLOYEES, LEAVE_DUE,15,5, 2, 2,0,Y,0,AU,0,0
,PUBLIC,EMPLOYEES, LEAVE_TAKEN,16,5, 2, 2,0,Y,0,AV,0,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE,PERSONNEL_ID,1,1, 8, 8,0,Y,0,AA,1,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE, SEQNO1,2,0, 4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE,ADDRESS_LINE,3,1,20,20,0,Y,0,AI%d,4,0
,PUBLIC,EMPLOYEES_INCOME,PERSONNEL_ID, 1,1, 8, 8,0,Y,0,AA,1,0
,PUBLIC,EMPLOYEES_INCOME, SEQNO1, 2,0, 4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_INCOME, CURR_CODE, 3,1, 3, 3,0,Y,0,AR%d,8,0
,PUBLIC,EMPLOYEES_INCOME, SALARY, 4,4, 5, 9,0,Y,0,AS%d,8,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,PERSONNEL_ID,1,1,8, 8,0,Y,0,AA,1,0
,PUBLIC,EMPLOYEES_INCOME_BONUS, SEQNO1,2,0,4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_INCOME_BONUS, SEQNO2,3,0,4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_INCOME_BONUS, BONUS,4,4,5, 9,0,Y,0,AT%d(%d),4,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,PERSONNEL_ID,1,1, 8, 8,0,Y,0,AA,1,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED, SEQNO1,2,0, 4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED, LEAVE_START,3,5, 6, 6,0,Y,0,AX%d,8,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED, LEAVE_END,4,5, 6, 6,0,Y,0,AY%d,8,0
,PUBLIC,EMPLOYEES_LANG, PERSONNEL_ID,1,1,8, 8,0,Y,0,AA,1,0
,PUBLIC,EMPLOYEES_LANG, SEQNO1,2,0,4,10,0,N,0,, 3,0
,PUBLIC,EMPLOYEES_LANG, LANG,3,1,3, 3,0,Y,0,AZ%d,4,0
INDEXES
,PUBLIC,EMPLOYEES,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES,TRIFOX3,D,0,1,AE,0,0,0
,PUBLIC,EMPLOYEES,TRIFOX7,D,0,1,AH,0,0,0
GENESISsql Users Guide 86

Chapter 5 ADABAS C Driver Customization
,PUBLIC,EMPLOYEES,TRIFOX8,D,0,1,AJ,0,0,0
,PUBLIC,EMPLOYEES,TRIFOX13,D,0,1,AO,0,0,0
,PUBLIC,EMPLOYEES,TRIFOX14,D,0,1,AP,0,0,0
,PUBLIC,EMPLOYEES,LEAVE_LEFT,D,0,2,H1,0,0,0
,PUBLIC,EMPLOYEES,DEPT_PERSON,D,0,2,S2,0,0,0
,PUBLIC,EMPLOYEES,CURRENCY_SALARY,D,0,2,S3,0,0,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES_INCOME,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES_INCOME,DEPT_PERSON,D,0,2,S2,0,0,0
,PUBLIC,EMPLOYEES_INCOME,CURRENCY_SALARY,D,0,2,S3,0,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,DEPT_PERSON,D,0,2,S2,0,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,CURRENCY_SALARY,D,0,2,S3,0,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,DEPT_PERSON,D,0,2,S2,0,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,CURRENCY_SALARY,D,0,2,S3,0,0,0
,PUBLIC,EMPLOYEES_LANG,TRIFOX1,U,0,1,AA,0,0,0
,PUBLIC,EMPLOYEES_LANG,TRIFOX3,D,0,1,AZ,0,0,0
XCOLUMNS
,PUBLIC,EMPLOYEES,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES,TRIFOX3, NAME,0,A,0,0
,PUBLIC,EMPLOYEES,TRIFOX7, BIRTH ,0,A,0,0
,PUBLIC,EMPLOYEES,TRIFOX8, CITY,0,A,0,0
,PUBLIC,EMPLOYEES,TRIFOX13, DEPT,0,A,0,0
,PUBLIC,EMPLOYEES,TRIFOX14, JOB_TITLE,0,A,0,0
,PUBLIC,EMPLOYEES,LEAVE_LEFT, LEAVE_DUE,0,A,0,0
,PUBLIC,EMPLOYEES,LEAVE_LEFT, LEAVE_TAKEN,1,A,0,0
,PUBLIC,EMPLOYEES,DEPT_PERSON, DEPT,0,A,0,0
,PUBLIC,EMPLOYEES,DEPT_PERSON, NAME,1,A,0,0
,PUBLIC,EMPLOYEES,CURRENCY_SALARY, CURR_CODE,0,A,0,0
,PUBLIC,EMPLOYEES,CURRENCY_SALARY, SALARY,1,A,0,0
,PUBLIC,EMPLOYEES_ADDRESS_LINE,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME,DEPT_PERSON, DEPT,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME,DEPT_PERSON, NAME,1,A,0,0
,PUBLIC,EMPLOYEES_INCOME,CURRENCY_SALARY, CURR_CODE,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME,CURRENCY_SALARY, SALARY,1,A,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,DEPT_PERSON, DEPT,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,DEPT_PERSON, NAME,1,A,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,CURRENCY_SALARY, CURR_CODE,0,A,0,0
,PUBLIC,EMPLOYEES_INCOME_BONUS,CURRENCY_SALARY, SALARY,1,A,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,DEPT_PERSON, DEPT,0,A,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,DEPT_PERSON, NAME,1,A,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,CURRENCY_SALARY, CURR_CODE,0,A,0,0
,PUBLIC,EMPLOYEES_LEAVE_BOOKED,CURRENCY_SALARY, SALARY,1,A,0,0
,PUBLIC,EMPLOYEES_LANG,TRIFOX1, PERSONNEL_ID,0,A,0,0
,PUBLIC,EMPLOYEES_LANG,TRIFOX3, LANG,0,A,0,0

Because a PE is a repeating group of fields within the same record, you must ensure that
there is a unique key that identifies the row. In this case, the unique key is
PERSONNEL_ID.

Now you have six tables mapped onto the file. To get a list of salaries for all employees in
department TECH88, use the following SQL:
GENESISsql Users Guide 87

Chapter 5 ADABAS C Driver Customization
SELECT DEPT,A.PERSONNEL_ID,SALARY FROM EMPLOYEES
A,EMPLOYEES_INCOME B
WHERE DEPT = 'TECH88'
AND A.PERSONNEL_ID = B.PERSONNEL_ID

To get a list of bonuses for all employees in department TECH88, use the following SQL:

SELECT DEPT,A.PERSONNEL_ID,BONUS FROM EMPLOYEES
A,EMPLOYEES_INCOME_BONUS B
WHERE DEPT = 'TECH88'
AND A.PERSONNEL_ID = B.PERSONNEL_ID

To get a list of salaries and bonuses for all employees, use the following SQL:

SELECT A.PERSONNEL_ID,SALARY,BONUS FROM EMPLOYEES_INCOME A,
EMPLOYEES_INCOME_BONUS B
WHERE A.PERSONNEL_ID = B.PERSONNEL_ID
AND A.SEQNO1 = B.SEQNO1

 In each of these examples, you are ‘‘joining’’ two tables which are in fact the same
record. Likewise you use the SEQNOx fields to insert and update the correct PE and MU
fields
GENESISsql Users Guide 88

GENESISsql Users Guide

Chapter 6

Synergex SDMS Driver

Introduction
The GENESIS Synergex SDMS driver, available on Windows, Unix, and OpenVMS, uses
direct SDMS calls to provide very high performance with SQL access.

This section explains how you create the data source file and load Synergy/DE
Repository definitions. It assumes that VORTEX, GENESISsql, and the driver have all
been installed according to the instructions for your platform.

NOTE: You must obtain the Synergex SDMS driver from Synergex (www.synergex.com). Trifox
developed the Synergex SDMS driver exclusively for Synergex.

Making it Work

☞ Creating the data source file

The data source file tells the driver how to find the GENESIS dictionary and database
files. You create this file with a text editor. Be sure to put it in the $GENESIS_HOME
directory.

You must include entries for the database and dictionary. Two other entries, related to
logging, are optional:

datasource string (Required) Directory path(s) to SDMS
database files, delimited by “;”.

dictsource string (Required) Directory path to GENESIS
dictionary SDMS database files.

logfile string Fully-qualified logfile name.

loglevel integer Logging level (0 - none, 1 - control
blocks/data, 2 - conversion output)

In our example, the dictionary directory is "/usr2/genesis/sdms" and the SDMS
database files are stored in "/usr2/genesis/sdms0" and "/usr2/genesis/sdms1":

datasource ;/usr2/genesis/sdms0;/usr2/genesis/sdms1;
dictsource /usr2/genesis/sdms

The GENESIS SDMS driver uses the multiple datasource directory entries to locate the
database files. It searches the entries in the order they are listed.
GENESISsql Users Guide 89

Chapter 6 Synergex SDMS Driver Making it Work
☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS SDMS dictionary using the Data
Dictionary Utility (DDU).

1. Change directory to your dictionary directory

2. Type

gds0init -c

☞ Loading existing Synergy/DE Repository definitions

The DDU reads the definitions stored in the Repository for information on how to build
the user table entries. It finds the repository files either from the command line or from
the RPSMFIL and RPSTFIL environment variables.

If these are not defined, then it uses "RPSDAT:rpsmain.ics" and
"RPSDAT:rpstext.ics".

The DDU reads in every file definition and goes through the structures defined for that
file. The structure name becomes the table name. If there are multiple structures defined
in the file, DDU reads the tag information and it with the table definition. Field
definitions are inserted into the GENESIS_COLUMNS table. User defined fields have
optional TYPE, CLASS, and DATA definitions which are also stored in the
GENESIS_COLUMNS record for that field. Array fields are identifed by the field name
appended with the dimension character and the count. The dimension character is read
from the GENESIS_WDD_DIMCHAR environment variable and defaults to “#”. For
example, if address is an array field, the columns will be “ADDRESS”, “ADDRESS#1”,
and “ADDRESS#2”.

Indexes are also read from the Repository. If the index is unamed, the default name is
“INDEX_n” where n is the index number.
GENESISsql Users Guide 90

GENESISsql Users Guide

Chapter 7

OpenVMS RMS Driver

Introduction
The GENESIS OpenVMS RMS driver, available only on AXP OpenVMS, uses direct RMS
calls to provide very high performance with SQL access.

This section explains how you create the data source file and load RDF definitions. It
assumes that VORTEX, GENESISsql, and the driver have all been installed according to
the instructions for your platform.

Making it Work

☞ Creating the data source file

The data source file tells the driver how to find the GENESIS dictionary and database
files. You create this file with a text editor. Be sure to put it in the GENESIS_HOME
directory.

You must include entries for the database and dictionary. The other entries are optional:

Variable Data Type Description

datasource string (Required) Directory path(s) to RMS database files,
delimited by “;”.

dictsource string (Required) Directory path to GENESIS dictionary
RMS database files.

bit_char Yes/No If Yes, then all bit fields will be described as CHAR(1)
in GENESIS_COLUMNS queries.

bit_decode string A two character string, e.g. NY, which is applied to bit
fields on fetch and insert/update.

logfile string Fully-qualified logfile name.

loglevel integer Logging level (0 - none, 1 - control blocks/data, 2 -
conversion output)

 In the example, the dictionary directory is dkb500:[usr.rms] and the new RMS
database files are stored in dkb500:[usr.rms0]:

datasource ;dkb500:[usr.rms0]
dictsource dkb500:[usr.rms]
…

The GENESIS RMS driver uses the datasource directory entry to locate the database files.
GENESISsql Users Guide 91

Chapter 7 OpenVMS RMS Driver Making it Work
☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS RMS dictionary using the Data
Dictionary Utility (DDU). Use the data source file described to create the GENESIS data
dictionary files in the dkb500:[usr.rms] directory with the following command:

gds8init data_source_file -i|-ardffile [options]

where

Variable Description

data_source_file Is a file located in $GENESIS_HOME.

-i Initializes the GENESIS directory.

-ardffile Adds a new dictionary entry described in rdffile.

The following options are available:

Option Description

-oname Uses name as the object owner review.

-tname Use name as the object table name.

☞ Loading existing RMS table definitions

You can define existing RMS files in the GENESIS data dictionary. For example, to load a
file (described later in this section) called dkb500:[usr.rms]indexed-abc.rdf, type

gds8init data_source_file -adkb500:[usr.rms]indexed-abc.rdf

The format for RDF files is similar to that of a FDL file. For example, a three column,
keyed, variable length record file with two indexes is shown here:

IDENT 5-MAY-1999 17:34:08.14
AXP/OpenVMS RDF Routine

SYSTEM
SOURCE AXP/OpenVMS

FILE
NAME ABC
ORGANIZATION indexed

RECORD

FORMAT variable
SIZE 20

FIELD 0

NAME lastname
GENESISsql Users Guide 92

Chapter 7 OpenVMS RMS Driver Making it Work
TYPE string
LENGTH 10
POSITION 0
KEY FIELD yes
KEY ID 0
KEY CHANGES no
KEY DUPLICATES no

FIELD 1

NAME age
TYPE int2
LENGTH 2
POSITION 10
KEY FIELD no

FIELD 2

NAME salary
TYPE decimal
LENGTH 8
POSITION 12
KEY FIELD yes
KEY ID 1
KEY CHANGES yes
KEY DUPLICATES yes
KEY ALT NUL yes
KEY ALT NUL VAL 0

You define a RDF file with any editor using the keywords defined below.

The table name is ABC and comes from the FILE->NAME keyword. If you specify the -o
option, it defines the table owner. Otherwise, the table owner is set to PUBLIC.

FILE keywords Definition

FILE Name of the RMS file. This can be either:

a. Logical:filename.dat
b. device:[dir]filename.dat
c. filename
d. filename.[ext]

In the first two cases, the exact filename is used to
open the RMS file. In the thirdcase, the file has .DAT
appended. In the last case, if there is just a dot, then it
is discarded; otherwise the .ext is used as is. In these
two cases, the file is searched for in the dictsource and
then the datasource directories.
GENESISsql Users Guide 93

Chapter 7 OpenVMS RMS Driver Making it Work
ORGANIZATION One of:
INDEXED
SEQUENTIAL
RELATIVE

RECORD keywords Definition

FORMAT One of:
FIXED
VARIABLE

LENGTH Length of the RMS records

TABLENAME Name of the table. If not specified, then FILE is used
as the tablename.

FIELD keywords Definition

NAME Name of the field

TYPE Datatype of the field. One of

[D]BINn - Unsigned Integer, n = 1, 2, 4, 8
[D]BIT - Bit field
[D]COLLATED - Collated key
[D]DATE - Date in DATEFORMAT character format.
[D]DECIMAL - Packed Decimal
[D]DOUBLE - VAX D_Float (8 bytes)
[D]DOUBLE2 - VAX D_Float (8 bytes) with implied
scale 2 stored as a whole number
[D]FLOAT - VAX F_Float (4 bytes)
[D]GFLOAT - VAX G_Float format (8 bytes)
[D]INTn - Signed integer, n = 1, 2, 4, 8
[D]STRING - Character string
[D}STRINGV - Variable length string
[D]ZONED - Zoned Decimal

[D] indicates a descending key if the field is a key.
GENESISsql Users Guide 94

Chapter 7 OpenVMS RMS Driver Making it Work
NOTE: All floating point data is assumed to be stored in RMS in VAX format.

The FIELD keywords must be used in the order in which they are defined in this table.
Not all of the keywords are required, e.g. the KEY keywords are not used if this is not a
key field. The KEY keywords have been superseded by the INDEX keywords defined
below.

INDEX keywords Definition

INDEX n Begins index definition. n is the RMS key number.

NAME Name of the index.

FIELD [DESC | ASC] Name of the field. Fields are defined in their key
segment order. The optional DESC and ASC
keywords override the field datatype definition.

DUPLICATES Defines a non-unique index. The default is unique.

There are two methods of defining indexes. The first is to use the FIELD keywords and is
appropriate for very simple RMS files, i.e. those that have simple indexes without fields
that belong in multiple indexes. The second method is to use the INDEX keywords.
These can be used after all the fields have been defined and are used in lieu of the FIELD
KEY keywords. It is not a good idea to mix the two methods.

DATEFORMAT Describes the format of the date. One of
DDMMYYYY
MMDDYYYY
YYYYMMDD

LENGTH Length of the field.

SCALE Scale for Packed or Zoned decimals.

POSITION Starting record position (0 based)

BIT n For BIT fields, n is the bit position (0-7)

KEY FIELD yes/no

KEY ID RMS index number

KEY CHANGES Can the key field(s) be modified? yes/no

KEY DUPLICATES Is this a non-unique key? yes/no

KEY ALT NUL Does this key have an alternate NULL value? yes/no

KEY ALT NUL VAL Character to use to signify null in the index

KEY POSITION Index segment position. If this is not specified, then it
defaults to 0.

NULL yes/no
GENESISsql Users Guide 95

Chapter 7 OpenVMS RMS Driver Multivalue fields
An example an index defined using the INDEX keywords is:

INDEX 0
NAME INDEX_01
FIELD ID
FIELD NAME
FIELD LOCATION

This defines a three segment key called INDEX_01 consisting of the ID, NAME, and
LOCATION fields. It is a UNIQUE index by default and sorted in ascending order.

Many users may find this method simpler and more efficient to set up than the FIELD
KEY keywords. Both are supported for backward compatibility.

Multivalue fields
You can define Multivalue (MU) or array fields in the GENESIS data dictionary.

The MU field(s) must be the last one(s) in the table definition. There are two types of MU
fields, fixed and null suppressed. Both of them define a maximum number of entries.
Null suppressed MU fields have a one byte count at the field's record offset whereas
fixed MU fields always display the maximum number of entries.

Null suppressed MU fields never contain a NULL value. For example, if entries 0, 1, and
2 have values, then the count is 3. If you update entry 1 to NULL, the value in entry 2 is
shifted over and the count is decremented to 2.

FIELD -> MU keywords Definition

MU COUNT If String, then the MU count is stored as a character
string; otherwise it is integer.

MU FIELD Yes/No

MU FORMAT Fixed/Null-suppressed

MU MAXIMUM Maximum number of values

MU VALUE SIZE Size of each value

Tagged records
Tagged records are a method of defining a table with an implied WHERE clause. This is
done when different record types are stored in the same file. For example a RMS file may
have records for both the ORDER and ORDER_DETAIL table. By specifying that the
ORDER records have RECORD_TYPE = 0 and ORDER_DETAIL records have
RECORD_TYPE = 1, for example, an SQL query to the ORDER table will not return any
ORDER_DETAIL records even though they are in the same file.
GENESISsql Users Guide 96

Chapter 7 OpenVMS RMS Driver Tagged records
Tagged records are defined by using the TAG keywords:

TABLE -> TAG keywords Definition

TAG n Identifies the order of this tag definition

FIELD Name of the tag field

VALUE Value to compare (maximum 64 bytes). The value
can also be specified using hex 0x notation, e.g.
0x010521.

BOOLOP AND or OR
GENESISsql Users Guide 97

GENESISsql Users Guide

Chapter 8

TRIMpl List Driver

Introduction
The GENESIS TRIMp list driver implements a very high performance read-only database
using the TRIMpl list feature combined with shared memory. You can also use the
TRIMpl list driver to create a read-write database using either a file-based catalog with
local lists or a completely dynamic in-memory database. Such a database exists only for
the life of the connection and so any tables created during the connection are lost when
the connection is released.

This section explains how you create the GENESIS catalog and load the list table
definitions. It assumes that VORTEX, GENESISsql, and the driver have all been installed
according to the instructions for your platform.

Making it Work

☞ Creating the data source file

The data source file gives the driver certain behavioral options. You create this file with a
text editor. Be sure to put it in the GENESIS_HOME directory.

All the entries are optional:

Variable Data Type Description

dictsource string The directory in which the GENESIS catalog files
are stored. If not given, then look for a shared
memory catalog.

heap_block_size integer The minimum heap block size in bytes. The default
is 16384 bytes.

logfile string Fully-qualified logfile name.

loglevel integer Logging level (0 - none, 1 - control blocks/data, 2 -
conversion output)

shmem_seg_size integer The shared memory segment size in Kb. The
default is 128 Kb

vtx_shm_addr string Fully-qualified VORTEX_SHM_ADDR filename. If
not given, the driver will look for a
VORTEX_SHM_ADDR env var.
GENESISsql Users Guide 98

Chapter 8 TRIMpl List Driver Making it Work
The logging options are useful to help debug access problems.

If you specify “memory” as the data source filename in the connect string, then the
GENESIS list driver creates a completely dynamic in-memory database. The driver will
look for a file called “memory” in GENESIS_HOME and if found, it will use the logfile,
loglevel, and heap_block_size keywords.

☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS List dictionary using the Data
Dictionary Utility (DDU). Create the GENESIS catalog in shared memory with the
following command:

gds9init

This creates the GENESIS catalog in shared memory and also creates GENESIS catalog
entries for all the lists currently stored in shared memory.

If you want to use a file-based catalog instead of shared memory, type

gds9init -f [directory]

If [directory] is not specified, the files are built in the current directory. This only builds
the GENESIS catalog, no user lists are loaded. Any DDL statements executed in this
mode will create memory-based catalog entries and tables which will exist only for the
life of the connection.

vtx_shm_file string Fully-qualified VORTEX_SHM_FILE filename. If
not given, the driver will look for a
VORTEX_SHM_FILE env var.

Variable Data Type Description
GENESISsql Users Guide 99

GENESISsql Users Guide

Chapter 9

AcuCobol Vision Driver

Introduction
The GENESIS AcuCobol Vision driver, available on Windows and Unix, uses direct
Vision calls to provide very high performance with SQL access.

This section explains how you create the data source file and load Vision XFD definitions.
It assumes that VORTEX, GENESISsql, and the driver have all been installed according to
the instructions for your platform.

NOTE: You must obtain the AcuCobol Vision driver from Micro Focus, Inc
(www.microfocus.com). Trifox developed the AcuCobol Vision driver exclusively for
AcuCobol.

Making it Work

☞ Creating the data source file

The data source file tells the driver how to find the GENESIS dictionary and database
files. You create this file with a text editor. Be sure to put it in the $GENESIS_HOME
directory.

You must include entries for the database and dictionary. Two other entries, related to
logging, are optional:

debug_logfile string Fully-qualified debugging logfile name.

debug_loglevel integer Debugging logging level (0 - none, 1 -
control blocks/data, 2 - conversion
output)

dictsource string (Required) Directory path to GENESIS
dictionary Vision database files.

file_prefix string (Required) Directory path(s) to Vision
database files, delimited by “;”.

file_suffix string Suffix appended to file names stored in
GENESIS_TABLES.

logging yes/no Turns on Vision transaction logging.

log_encrypt yes/no Turns on Vision transaction logfile
encryption.
GENESISsql Users Guide 100

Chapter 9 AcuCobol Vision Driver Making it Work
In our example, the dictionary directory is "/usr2/genesis/vision" and the Vision
database files are stored in "/usr2/genesis/vision0" and "/usr2/genesis/
vision1":

file_prefix ;/usr2/genesis/vision0;/usr2/genesis/vision1;
dictsource /usr2/genesis/vision

The GENESIS Vision driver uses the multiple datasource directory entries to locate the
database files. It searches the entries in the order they are listed.

☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS Vision dictionary using the Data
Dictionary Utility (DDU).

1. Change directory to your dictionary directory or use the -d option to specify a
dictionary directory.

2. Type

gds4init -c

☞ Loading existing Vision XFD definitions

The DDU reads the definitions stored in the XFD file(s) for information on how to build
the user table entries. You can specify multiple XFD files.

The DDU reads in every file definition and creates the GENESIS catalog entries to
describe the Vision data files.

locks_per_file integer The maximum number of locks per file.

log_buffer_size integer The size of the log buffer.

log_device yes/no Turns on device logging.

log_dir string The directory where to store the
transaction logfiles. The default is the
current working directory.

log_file string The name of the transaction logfile.

max_files integer The maximum number of open Vision
files.

max_locks integer The maximum number of locks.

read_only yes/no Disallows any database modifications.

v_buffers integer The number of Vision data buffers.
GENESISsql Users Guide 101

GENESISsql Users Guide

Chapter 9

Micro Focus ExtFH
Driver

Introduction
The GENESIS Micro Focus ExtFH driver, available on Windows and Unix, uses direct
ExtFH calls to provide very high performance with SQL access.

This section explains how you create the data source file and load ExtFH XFD definitions.
It assumes that VORTEX, GENESISsql, and the driver have all been installed according to
the instructions for your platform.

NOTE: You must obtain the Micro Focus ExtFH driver from Micro Focus, Inc
(www.microfocus.com). Trifox developed the Micro Focus ExtFH driver exclusively for
Micro Focus.

Making it Work

☞ Creating the data source file

The data source file tells the driver how to find the GENESIS dictionary and database
files. You create this file with a text editor. Be sure to put it in the $GENESIS_HOME
directory.

You must include entries for the database and dictionary. Two other entries, related to
logging, are optional:

debug_logfile string Fully-qualified debugging logfile name.

debug_loglevel integer Debugging logging level (0 - none, 1 -
control blocks/data, 2 - conversion
output)

dictsource string (Required) Directory path to GENESIS
dictionary ExtFH database files.

file_prefix string (Required) Directory path(s) to ExtFH
database files, delimited by “;”.

file_suffix string Suffix appended to file names stored in
GENESIS_TABLES.

logging yes/no Turns on ExtFH transaction logging.
GENESISsql Users Guide 102

Chapter 9 Micro Focus ExtFH Driver Making it Work
In our example, the dictionary directory is "/usr2/genesis/mfextfh" and the ExtFH
database files are stored in "/usr2/genesis/mfextfh0" and "/usr2/genesis/
mfextfh1":

file_prefix ;/usr2/genesis/mfextfh0;/usr2/genesis/mfextfh1;
dictsource /usr2/genesis/mfextfh

The GENESIS ExtFH driver uses the multiple datasource directory entries to locate the
database files. It searches the entries in the order they are listed.

☞ Initializing the dictionary and loading GENESIS definitions

You are now ready to initialize and load the GENESIS ExtFH dictionary using the Data
Dictionary Utility (DDU).

1. Change directory to your dictionary directory or use the -d option to specify a
dictionary directory.

2. Type

gds10init -c

☞ Loading existing Vision XFD definitions

The DDU reads the definitions stored in the XFD file(s) for information on how to build
the user table entries. You can specify multiple XFD files.

The DDU reads in every file definition and creates the GENESIS catalog entries to
describe the ExtFH data files.

log_encrypt yes/no Turns on ExtFH transaction logfile
encryption.

locks_per_file integer The maximum number of locks per file.

log_buffer_size integer The size of the log buffer.

log_device yes/no Turns on device logging.

log_dir string The directory where to store the
transaction logfiles. The default is the
current working directory.

log_file string The name of the transaction logfile.

max_files integer The maximum number of open ExtFH
files.

max_locks integer The maximum number of locks.

read_only yes/no Disallows any database modifications.

v_buffers integer The number of ExtFH data buffers.
GENESISsql Users Guide 103

GENESISsql Users Guide

Chapter 10

Messages & Codes

Generic GENESISsql Messages

position End of buffer reached

Cause: The SQL statement ended prematurely.

Action: Check the syntax for the command you are using.

position Illegal character

 Cause: The SQL statement contains an illegal character at the given position.

Action: Check the statement for legality.

position Identifier too long

Cause: The SQL statement contains an identifier that is too long. Identifiers are limited to
30 characters.

Action: Rename the identifier.

position Ending quote missing

Cause: The SQL statement is missing an ending quote.

Action: Add the missing quote.

position String too long

Cause: The SQL statement contains a string constant that is too long.

Action: Use a bind variable.

position yacc: msg

Cause: The SQL statement cannot be parsed correctly.

Action: Check for invalid keywords.

Table name undefined

Cause: The SQL statement references a table that is not defined in the catalog.

Action: Correct the statement to reference a defined table or define the table in the
catalog.

Number of columns does not match number of values

Cause: The SQL INSERT statement’s values do not match the number of columns defined
for the table or listed in the column list.

Action: Correct the statement.
GENESISsql Users Guide 104

Chapter 10 Messages & Codes Generic GENESISsql Messages
Illegal number of parameters for builtin function

Cause: The SQL statement has the wrong number of parameters for the builtin function.

Action: Correct the statement.

Character array too big (max: number)

Cause: The SQL statement contains a character array that is too big.

Action: Correct the statement.

Too many tables in SELECT (max: number)

Cause: The SQL SELECT statement contains too many tables.

Action: Correct the statement.

Column name undefined

Cause: The SQL statement references a column that is not defined in the catalog.

Action: Correct the statement or define the column/table in the catalog.

Non aggregates require a GROUP BY expression

Cause: The SQL SELECT statement contains aggregate and non aggregate select list items
and this requires a GROUP BY expression.

Action: Edit the statement and use GROUP BY or change the statement’s structure.

to_char/date/ number’s format mask must be a constant string

Cause: The SQL statement uses a data conversion function with a non-constant format
mask string.

Action: Correct the statement.

Too many sort columns (max: number)

Cause: The SQL SELECT statement has too many columns in the ORDER BY clause.

Action: Reduce the number of columns in the ORDER BY clause.

Sort column name out of range (1 - number)

Cause: The SQL SELECT statement’s ORDER BY clause references a column number that
is out of range.

Action: Correct the statement.

Column name already defined

Cause: The SQL CREATE TABLE/VIEW statement has duplicate column names.

Action: Correct the statement.

Too many columns specified

Cause: The SQL statement has too many columns defined.

Action: Correct the statement.
GENESISsql Users Guide 105

Chapter 10 Messages & Codes Generic GENESISsql Messages
Too many sub-queries at level number (max: number)

Cause: The SQL statement contains too many sub-queries.

Action: Correct the statement.

Sub-query must return a single column

Cause: The SQL statement contains a sub-query whose select list has more than one
column.

Action: Correct the statement.

Operation requires named authorization

Cause: The SQL statement requires the specified authorization.

Action: Ensure that you have authority to issue the statement. Contact your DBA.

Invalid password

Cause: The connection password is incorrect.

Action: Ensure that you are using a valid password. Contact your DBA.

Data truncation (max: number)

Cause: Data was truncated.

Action: Notify Trifox support.

Create view column count mismatch (create: number, select number)

Cause: The SQL CREATE VIEW statement’s column list does not match the number of
columns in the SELECT statement’s select list.

Action: Correct the statement.

NULL not allowed for column

Cause: The SQL INSERT/UPDATE statement is using a NULL value for a not-NULL
column.

Action: Correct the statement.

If any numeric operand is NULL then only ‘==’ and ‘!=’ are valid

Cause: The SQL statement’s WHERE clause is using an invalid operator with a NULL
value.

Action: Correct the statement.

Invalid predicate result (NULL or invalid datatype)

Cause: The SQL statement’s WHERE clause returned a NULL or invalid datatype result.

Action: Correct the statement.

Notify Trifox support.

Cause: Internal error.

Action: Notify Trifox support.
GENESISsql Users Guide 106

Chapter 10 Messages & Codes Generic GENESISsql Messages
Too many cursors opened

Cause: Your application has too many concurrently opened cursors.

Action: Explicitly close cursors when they are no longer needed. If this action does not
solve the problem, notify Trifox support.

Function name not implemented yet

Cause: Not implemented yet.

Action: Contact Trifox with an enhancement request.

number: Unknown node (type: name)

Cause: Internal error.

Action: Notify Trifox support.

Unknown error code

Cause: Internal error.

Action: Notify Trifox support.

Catalog table ‘name’ corrupted or out of date

Cause: The specified GENESIS catalog table cannot be read. It has either been modified
directly or it is from a different version.

Action: Rebuild the GENESIS catalog with the correct catalog utility.

‘GENESIS_HOME’ environment variable not found

Cause: The GENESIS_HOME environment variable is not set.

Action: Set the GENESIS_HOME environment variable, following instructions in the
installation procedure.

Cannot open file ‘filename’

Cause: The specified file cannot be opened. The path may be wrong, it may not exist, or
the permissions are not set correctly.

Action: Check the spelling and verify the location of filename.

No datasource specified

Cause: The connect string does not contain a data source specification.

Action: Refer to the chapter, Connecting Your Application to VORTEX in the Trifox
Resource Manual for detailed instructions.

Invalid parameter

Cause: The VORTEX COMMAND command sent an invalid parameter for the specified
command.

Action: Verify that the parameters you use are all valid.
GENESISsql Users Guide 107

Chapter 10 Messages & Codes Generic GENESISsql Messages
Too many columns number (max: number)

Cause: The SQL statement references a table with too many columns.

Action: Correct the statement.

Only ‘=’ is allowed with ROWID

Cause: The SQL statement’s WHERE clause contains an invalid ROWID predicate.

Action: Verify that all your ROWID predicates are correct.

Column ‘name’, integer overflow

Cause: An overflow occurred while converting a number to an integer.

Action: Correct the GENESIS catalog entry for the column.

Column ‘name’, 8 byte integer not supported on this platform

Cause: The GENESISsql platform does not support eight-byte integers.

Action: Remove references to 8-byte integers from the GENESIS catalog.
GENESISsql Users Guide 108

Chapter 10 Messages & Codes Generic GENESISsql Messages
Synergex SDMS and SQL
SQL statements have several limitations when you try to use them with Synergex’ SDMS
system.

• Creating Tables —Tables are stored in Synergex SDMS files. Tables created using
the CREATE TABLE statement create files named owner%tablename.

• Dropping Tables — The DROP TABLE command removes all GENESIS catalog
entries for the table. It also deletes the file. Be careful issuing the DROP TABLE.
If the file contains data for multiple tables, they will all be lost when you delete
the file.

Creating Tables
Since SDMS files must have all indexes defined before the file is actually created, you do
not see the owner%tablename file after you issue the CREATE TABLE statement.
Because the actual file creation is deferred until the first table access, you have the
opportunity to define indexes. For example, to create the STAFF table with two indexes,
perform the following:

CREATE TABLE STAFF (ID INTEGER,NAME CHAR(10),DEPT INTEGER,JOB CHAR(6),
 YEARS INTEGER,SALARY NUMERIC(8,2),COMM NUMERIC(8,2));
CREATE INDEX STAFF_IX1 ON STAFF(ID);
CREATE INDEX STAFF_IX2 ON STAFF(NAME,DEPT);

The table and index definitions are stored in the GENESIS catalog but the file is not
created. The first SELECT/INSERT/UPDATE/DELETE statement that references the
STAFF table forces the file creation.

Tables that are defined using the GENESIS SDMS Data Dictionary Utility are stored in
the filename defined at create-time. In addition, you can use store data for multiple SQL
tables in the same SDMS file by using tag fields.

Synergex SDMS-Specific Messages

No data source

Cause: The connect string does not specify a data source.

Action: Refer to the chapter, Connecting Your Application to VORTEX in the Trifox
Resource Manual for detailed instructions.

No directory defined

Cause: The data source file does not contain the datasource directive.

Action: Verify the data source file contents.

No dictionary source directory defined

Cause: The data source file does not contain the dictsource directive.

Action: Verify the data source file contents.
GENESISsql Users Guide 109

Chapter 10 Messages & Codes Generic GENESISsql Messages
SDMS-1: Authorization failure
SDMS-2: Dictionary access failure
SDMS-3: No license available
SDMS-4: Out of memory

Cause: An SDMS authorization error has occurred.

Action: Refer to your Synergy SDMS documentation.

Format error in ‘datafiles’

Cause: The data source file directive datafiles is not defined correctly.

Action: Refer to the GENESISsql Users Guide for more information.

User does not have drop table permission

Cause: The SQL DROP TABLE statement cannot be performed by this user.

Action: Check the table specified in the SQL DROP TABLE statement.

Table ‘name’ not deleted from catalog

Cause: The SQL DROP TABLE statement failed due to an SDMS error.

Action: Notify Trifox support.

Table ‘name’ still open by other cursors

Cause: The SQL DROP TABLE statement references a table that is still being accessed by
other cursors.

Action: Close all cursors referencing this table first.

’CREATE INDEX’ not valid for this table type

Cause: The SQL CREATE INDEX statement is only valid for ISAM type files.

Action: Verify the table specified in the SQL CREATE INDEX statement is an ISAM table.

Table/View ‘name’ already in catalog

Cause: The SQL CREATE TABLE/VIEW statement references a table/view that is
already defined.

Action: Check the table specified in the SQL CREATE TABLE/VIEW statement.

File ‘name’ already exists

Cause: The SQL CREATE TABLE statement references a table that is already created.

Action: Check that the table specified does not already exist.

File ‘name’ does not exist

Cause: The SQL statement references a table stored in a file that does not exist. It may
have been deleted by another user using a difference catalog.

Action: Notify Trifox support.

Cannot create ‘name’: msg

Cause: The specified file cannot be created.

Action: Check msg for SDMS error information.
GENESISsql Users Guide 110

Chapter 10 Messages & Codes Generic GENESISsql Messages
Cannot end transaction: msg

Cause: The SQL COMMIT statement cannot be performed.

Action: Check msg for SDMS error information.

Cannot begin transaction: msg

Cause: The SQL COMMIT/ROLLBACK statement cannot be performed.

Action: Check msg for SDMS error information.

Cannot delete from ‘name’: msg

Cause: The SQL DELETE statement cannot be performed.

Action: Check msg for SDMS error information.

Cannot open ‘name’ for update: msg

Cause: The specified file cannot be opened for update.

Action: Check msg for SDMS error information.

File ‘name’ cannot be removed: msg

Cause: The specified file cannot be removed.

Action: Check msg for SDMS error information.

Column ‘name’ not deleted from catalog: msg

Cause: The specified column cannot be deleted from the catalog.

Action: Check msg for SDMS error information.

Index ‘name’ not deleted from catalog: msg

Cause: The specified column cannot be deleted from the catalog.

Action: Check msg for SDMS error information.

Index column ‘name’ not deleted from catalog: msg

Cause: The specified index column cannot be deleted from the catalog.

Action: Check msg for SDMS error information.

Cannot insert into ‘name’: msg

Cause: The SQL INSERT statement failed.

Action: Check msg for SDMS error information.

Cannot update ‘name’: msg

Cause: The SQL UPDATE statement failed.

Action: Check msg for SDMS error information.

Cannot define DEFAULT_INDEX: msg

Cause: The SQL statement references a table whose file creation failed.

Action: Check msg for SDMS error information.
GENESISsql Users Guide 111

Chapter 10 Messages & Codes Generic GENESISsql Messages
Cannot allocate context: msg

Cause: The SQL statement could not allocated a Synergy SDMS context.

Action: Check msg for SDMS error information.

Read error: msg

Cause: The SQL statement caused a read error.

Action: Check msg for SDMS error information.

Fetch error: msg

Cause: The SQL statement caused a fetch error.

Action: Check msg for SDMS error information.

Buffer overflow: msg

Cause: The SQL UPDATE statement caused a buffer overflow.

Action: Check msg for SDMS error information.

Column ‘name’, DBL decimal overflow

Cause: An overflow occurred while converting a number to a DBL decimal in column
name.

Action: Check GENESIS column definition for this column.

Column ‘name’, Unsupported data type: type

 Cause: GENESIS column has unknown datatype entry.

Action: Check GENESIS column definition for this column.

Column ‘name’, Invalid date data: data

Cause: The date data is not valid.

Action: Verify the data shown is correct.

SDMS Data Dictionary Utility Messages

***** ERROR: Cannot open files (ddc_init:data)

Cause: An error occurred while opening the Repository files. The ddc_init function
return code is shown.

Action: Notify your system administrator.

***** ERROR: GENESIS_HOME environment variable not found

Cause: The GENESIS_HOME environment variable is not set.

Action: Set the GENESIS_HOME environment variable

***** ERROR: sdms_init failed

Cause: The sdms_init function failed.

 Action: Notify your system administrator.
GENESISsql Users Guide 112

Chapter 10 Messages & Codes Generic GENESISsql Messages
***** ERROR: tablename : SDMS error

Cause: A SDMS error occurred while accessing the table.

Action: Notify your system administrator.

***** ERROR: Table lookup error: (ddc_fname: data)

Cause: An error occurred while retrieving the list of table definitions. The ddc_fname
function return code is shown.

Action: Notify your system administrator.

***** ERROR: 8 byte integer not supported on this platform

Cause: Your platform does not support 8-byte integers.

Action: Remove the 8 byte field definition from your Repository.

***** ERROR: Index index name, column column name not found

Cause: The given index references a field that is not defined.

Action: Notify your system administrator.

Column column name, unsupported date type: datemask

Cause: The column uses an unsupported data format mask.

Action: Notify your system administrator.

Structure structure name: Unknown error

Cause: The ddc_struct function returned DDC_ERR for the given structure.

Action: Notify your system administrator.

Structure structure name: Not found

Cause: The ddc_struct function could not find the given structure.

Action: The ddc_struct function did not find any field definitions for the given structure.

Action: None. Information message.

Structure structure name: No fields found

Cause: The ddc_struct function did not find any field definitions for the given structure.

Action: None. Information message.

Structure structure name: No keys found

Cause: The ddc_struct function did not find any key definitions for the given structure.

 Action: None. Information message.

Invisible field field name ignored

Cause: The invisible field definition is ignored.

Action: Information message
GENESISsql Users Guide 113

Chapter 10 Messages & Codes Generic GENESISsql Messages
Group field field name ignored

Cause: The group field definition is ignored.

Action: Information message

Null key index name, optimization reduced

Cause: (SDMS v7) Null keys can only be used for equality operations.

Action: None. Information message.

Null key 'index name' ignored

Cause: (SDMS v6) Null keys are ignored.

Action: None. Information message

Index index name, column column name datatype mismatch

Cause: The datatype of the index segment does not match the one defined in the
corresponding column definition

Action: Verify your Repository definition for this index and its segments.

Index index name, column column name, unsupported segment type type

Cause: The segment datatype for the given column in the given index is not supported.
Subsequent segment definitions for this index will be ignored.

Action: Verify your Repository definition for this index and its segments.

Index index name dropped

Cause: The given index definition was dropped because the first segment has an
unsupported segment type.

Action: Verify your Repository definition for this index and its segments.

No indexes defined for table table name

Cause: No indexes were successfully defined for the given table.

Action: None. Information message.
GENESISsql Users Guide 114

Chapter 10 Messages & Codes Generic GENESISsql Messages
Software AG ADABAS C and SQL
SQL statements used with Software AG’s ADABAS C system have limitations in creating
and dropping tables.

• Creating Tables — Because there is no programmatic method of creating
ADABAS C files, you cannot use the CREATE TABLE or CREATE INDEX
statements with ADABAS C.

• Dropping Tables — The DROP TABLE command removes all GENESIS catalog
entries for the table. It does not delete the data from the file.

Software AG ADABAS C-Specific Messages

Invalid database ‘name’ or dictionary file ‘name’

Cause: The data source file is either missing the database/dictionary directives or they
are set to 0.

Action: Refer to the “Creating the Dictionary File” on page 66.

Cannot delete from a subtable

Cause: The SQL DELETE statement is referencing a subtable (PE/MU).

Action: Check your program logic.

Only VIEW creation supported

Cause: The SQL CREATE TABLE statement is not supported.

Action: Check your program logic.

Duplicate View ‘name’

Cause: The SQL CREATE VIEW statement is creating a view that already exists.

Action: Check your program logic.

Cannot drop system tables

Cause: The SQL DROP TABLE statement cannot drop GENESIS system tables.

Action: Verify the table specified in the SQL DROP TALBE statement is not a GENESIS
catalog table.

Record not found

Cause: The SQL INSERT/UPDATE statement could not locate the correct MU/PE
record.

Action: Check your program logic. The SQL INSERT/UPDATE statement is not on the
correct MU/PE record.

Column ‘name’, Packed Decimal overflow

Cause: An overflow occurred while converting a number to a Packed Decimal.

Action: Check the GENESIS column definition forthis column name.
GENESISsql Users Guide 115

Chapter 10 Messages & Codes Generic GENESISsql Messages
Column ‘name’, Zoned Decimal overflow

Cause: An overflow occurred while converting a number to a Zoned Decimal.

Action: Check the GENESIS column definition for this column name.

Column ‘name’, unsupported data type: type

Cause: The ADABAS C FDT datatype in the GENESIS catalog is incorrect.

Action: Check the GENESIS column definitions for column name.

Column ‘name’, unsupported data type: data

Cause: Internal error.

Action: Notify Trifox support.

FDT Utility Messages

Field ‘name’ skipped, not in synonym file

Cause: The ADABAS C shortname was not found in the synonym file.

Action: If you want to include the field in the table definition, be sure to put its
shortname in the synonym file.

Field ‘name’ skipped, no preceding PE group field

Cause: The PE field was not preceded by a PE group field defintion.

Action: Add the PE group field definition into the synonym file

Index ‘name’ skipped, not in synonym file

Cause: The ADABAS C shortname was not found in the synonym file.

Action: If you want to include this index in the table definition, be sure to put its
shortname in the synonym file.

Table ‘name’, index ‘name’, column ‘name’ is packed decimal with null suppression, partial
key lookups will fail

Cause: Partial key lookups with null suppressed packed decimal fields are not supported
in ADABAS C.

Action: You have several options. You can drop the index from the synonym file, or
make sure that you only use equality operators with the index.

Table ‘name’, index ‘name’, column ‘name’ (m:n) is a partial field segment and cannot be
used

Cause: This means that the superdescriptor contains a segment which consists of only a
portion of a field. This is not supported in the SQL syntax and this index will not be
processed.

Action: No action required.

Field ‘name’ is not part of the preceding PE group or is not a MU field. Please modify the
synonym file.
GENESISsql Users Guide 116

Chapter 10 Messages & Codes Generic GENESISsql Messages
Cause: The field is not part of the PE group or is not part of the MU fields being defined
for the table.

Action: Modify the synonym file so that only the PE or MU fields along with the foreign
key field(s) are listed.
GENESISsql Users Guide 117

Index

GENESISsql Users Guide
Numerics
8-byte integers 108

A
ABS

builtin function 47
access error

drop table 110
AcuCobol driver 100
ADABAS C

adafdu 66
adarep 66
creating data source file 68
creating dictionary file

on MVS 67
creating tables 115
customizing for 79
dbid

setting value 66
descriptor values

using 79
driver 66
dropping tables 115
file

setting value 66
gds6init.fdu 67
LODCATLG 67
packed decimal fields

for date and timestamp 79
readonly fields 79
SEQNOn 82
super/sub-descriptors 79

alias
 see correlation_name

ALL PRIVILEGES 29
allocating

context error 112
arrays

large character 105
ASC keyword 16
ASCII

builtin function 47
authorization

SQL statement 106

B
BEGIN WORK 12
bind variable

string too long 104
bit_char 91
bit_decode 91
BITAND

builtin function 47
BITOR

builtin function 47
BITXOR

builtin function 47
buffer

end reached 104
buffer overflow 112
building

user table definitions 69

builtin functions 47
ABS 47
ASCII 47
BITAND 47
BITOR 47
BITXOR 47
CASE 48
CAST 48
CHAR_LENGTH 49
CHR 49
CONCAT 49
CONVERT 49
CURDATE 50
CURDATETIME 50
CURRENT_DATE 50
CURRENT_DATETIME 50
CURRENT_TIME 51
CURRENT_TIMESTAMP 51
CURTIME 51
CURTIMESTAMP 52
DATABASE 52
DAYNAME 52
DECODE 52
GREATEST 52
HOUR 52
IFNULL 52
INSTR 53
LCASE 53
LEAST 53
LEFT 53
LENGTH 53
LOCATE 53
LTRIM 53
NOW 53
NVL 53, 54
parameter errors 105
POSITION 54
REPLACE 54
REVERSE 54
RIGHT 54
ROUND 54
RTRIM 55
SQRT 55
SUBSTR 55
SUBSTRING 55
SYSDATE 55
TO_CHAR 56
TO_DATE 57
TO_NUMBER 58
TRANSLATE 58
TRUNC 59
UCASE 59
USER 59

C
C FDT 116
cannot create file 110
cascading

privileges 29
CASE

builtin function 48
CAST

builtin function 48

catalog
corrupted our out of date 107
seedictionary 60
undefined tables 104

CHAR 18
char

returning integer value 47
returning value for integer 49

CHAR_LENGTH
builtin function 49

characters
illegal in SQL statement 104
large array 105

CHR
builtin function 49

column names
duplicate 105

column_name 45
columns

mismatch in create 106
out of ranget 105
sorting 16
sub-queries 106
table definining 61
too many defined 105
too many in SQL statement

108
too many sort 105
undefined reference 105
user table description 75

columns do not match 104
COMMIT WORK 12
COMMIT/ROLLBACK

errors 111
Compaq driver 91
comparing values 52
CONCAT

builtin function 49
connect string

missing data source 107
context

error 112
conversion

data incorrect 105
CONVERT

builtin function 49
converting

datetimes 57
number to integer 108
numerics to char 56

converting numbers 115, 116
correlation_name 45
corrupted catalog 107
count

mismatched columns 106
CREATE INDEX 16

errors 110
CREATE SYNONYM 17
CREATE TABLE 18

duplicate column names 105
table already created 110

CREATE TABLE/VIEW 110
CREATE VIEW 20
GENESISsql Users Guide 118

Index
duplicate column names 105
mismatch 106

creating
views 20

creating indexes 16
creating tables

ADABAS C 115
SDMS 109

CURDATE
builtin function 50

CURDATETIME
builtin function 50

CURRENT_DATE
builtin function 50

CURRENT_DATETIME
builtin function 50

CURRENT_TIME
builtin function 51

CURRENT_TIMESTAMP
builtin function 51

cursors
too many open 107

CURTIME
builtin function 51

CURTIMESTAMP
builtin function 52

D
data

truncated 106
Data Dictionary Utility

SDMS messages 112
data source file 109

creating 68
data types

unsupported 116
DATABASE

builtin function 52
database directive 115
database files 89, 101, 103
database privileges

granting 28, 32
datasource 89, 91
Datasource Definitions 7
datasource directive 109
datasource directory undefined

109
Datasource File 7
datasource file

missing directive 115
datasources

error 107
datatypes

invalid result 106
unsupported 112
valid 18

DATE
defining for FDT 70

date
format mask 105

date data 112
date field

using 79

date values
rounding 54

DATETIME 18
datetime field

converting to 79
datetimes

converting 57
from integers or numerics 57

DAYNAME
builtin function 52

ddc_fname 113
ddc_init 112
ddc_struct 113
DDU

see also Data Dictionary
Utility

DE Repository 89, 100, 102
DECIMAL 18
decimal overflow 112, 115, 116
decimals

packed 115
zoned 116

DECODE
builtin function 52

DEFAULT_INDEX
error 111

defining
OWNER 28
SCHEMA 28

DELETE 22
errors 111
GRANT privilege 29

deleting
column from catalog 111
index 111
positioned 22
rows from a table 22
searched 22
user table definitions 78

DESC keyword 16
dictionary 60

 see user or GENESIS
dictionary directive 115
dictionary file 66
dictionary source directory

undefined 109
dictsource 89, 91, 98, 101, 103
dictsource directive 109
directives

datafiles 110
datasource 109
dictsource 109
missing 115

DOUBLE 18
drivers

ADABAS C 66
ExtFH 102
OpenVMS 91
SDMS 89
TRIMpl list 98
Vision 100

DROP INDEX 24
DROP SYNONYM 25

DROP TABLE 26, 110
errors 115

DROP VIEW 27
dropping

indexes 24
tables 26
views 27

dropping tables
ADABAS C 115
permission error 110
SDMS 109
SDMS error 110

E
ending

SQL statement prematurely
104

ending quote
missing 104

Environment Variables 107
GENESIS_HOME 7
GENESIS_INITSQL 9
RPSMFIL 90
RPSTFIL 90

errors
SDMS DD Utility 112

expression 45
ExtFH driver 102

F
FALSE 45
fetch error 112
file creation

failed 111
file does not exist 110
file_prefix 101, 103
files

cannot create 110
cannot open for update 111
database 89, 101, 103

FLOAT 18
foreign keys

defining 64
format error

datafiles 110
format masks

non-constant string 105
functions

 see also builtin functions
builtin 47
not yet implemented 107

G
gds6init 68
gds6init.fdu

ADABAS C 67
creating dictionary file 67

GENESIS catalog
out of date 107

GENESIS definitions
initializing & loading 68

GENESIS_HOME 7, 68, 107, 112
GENESISsql Users Guide 119

Index
GENESIS_INITSQL 9
GENESIS_TABLES 61
GRANT 28, 29
GRANT privileges 29
granting

database privileges 28, 32
object privileges 29

GREATEST
builtin function 52

GROUP BY 105

H
header fields

GENESIS_COLUMNS 61
GENESIS_INDEXES 61
GENESIS_TABLES 61
GENESIS_XCOLUMNS 62

heap_block_size 98
HOUR

builtin function 52

I
identifier length 12
identifiers

too long 104
IFNULL

builtin function 52
illegal character 104
implemented

not yet 107
INDEX

creating 110
Index hints 36
indexes

creating 16
deleting 111
dropping 24
maximum number per table 61
table definining 61, 62
user table description 77

Initialization SQL Commands 9
INSERT

column mismatch 104
GRANT privilege 29

inserting
error 111

INSTR
builtin function 53

INTEGER 18
integer

returning char value 49
returning value for char 47

integer overflow 108
integers

converting to datetimes 57
internal error 106, 112
internal errors 107, 116
intializing

GENESIS definitions 68
invalid operators 106
invalid password 106

K
keywords

invalid 104

L
labeling

columns 45
LCASE

builtin function 53
LEAST

builtin function 53
LEFT

builtin function 53
LENGTH

builtin function 53
length

identifer in SQL statement 104
limitations

with SDMS 109
lists

aggregate items 105
more than one column 106
select items 105

loading
GENESIS definitions 68
user dictionary 78
user table definitions 69

loading dictionary
MVS 78
Unix 78

loading GENESIS
MVS 69

LOCATE
builtin function 53

LODCATLG
ADABAS C 67
MVS 67

logfile 91, 98
loglevel 91, 98
LTRIM 53

builtin function 53

M
mapping information 66
Micro Focus driver 102
MU fields 80
MU/PE records 115
multivalue fields

 see MU fields
MVS

loading dictionary 78
loading GENESIS 69

N
name length 12
NOW

builtin function 53
NULLs

not allowed 106
number

format mask 105
numeric

returning absolute value 47
numerics

conversion to char 56
converting to datetimes 57
returning bitand value 47
returning bitor value 47
returning bitxor value 47

NVL
builtin function 53, 54

O
object privileges

granting 29
revoking 33

OpenVMS driver 91
operators

invalid 106
ORDER BY

out of range columns 105
too many columns 105

overflow integer 108
overflowing

decimal 112, 115, 116
overflowing buffer 112
OWNER

defining 28

P
packed decimals 115
parameters

for builtin functions 105
invalid 107

parsing
error 104

partial field indexes 79
passwords

invalid 106
path

error 107
PE groups 80
period groups

 see PE groups
permissions

drop table 110
error 107

POSITION
builtin function 54

premature ending SQL statement
104

privileges
cascading 29
objects 62
revoking 32
user 64

Q
queries

too many 106
quotes

missing in SQL statement 104
GENESISsql Users Guide 120

Index
R
read error 112
REAL 18
record not found 115
relation

table definining 61
removing

errors 111
REPLACE

builtin function 54
required tables 60
REVERSE

builtin function 54
REVOKE 32, 33
revoking

object privileges 33
RIGHT

builtin function 54
RMS driver 91
ROLLBACK WORK 12
ROUND

builtin function 54
rounding values 54
ROWID

invalid 108
rows

deleting from a table 22
RPSDAT 90
RPSMFIL 90
RPSTFIL 90
RTRIM

builtin function 55

S
SCHEMA

defining 28
SDMS

creating tables 109
dropping tables 109
limitations 109

SDMS driver 89
SDMS error

drop table 110
SDMS messages 112
sdms_init 112
search_condition 45
SELECT

GRANT privilege 29
SEQNOn

ADABAS C 82
shmem_seg_size 98
SKIP

defining for FDT 70
skipping a field 70
SMALLINT 18
sort columns

too many 105
sorting columns 16
SQL Identifiers 12
SQL SELECT

aggregate & non aggregate list
use 105

too many tables 105
SQL statement

illegal character 104
incorrect data conversion 105
incorrect parameters 105
invalid datatype result 106
large character array 105
long identifier 104
long string constant 104
missing end quote 104
not authorized 106
parse error 104
premature end 104
too many columns 105, 108
too many sub-queries 106
undefined column referenced

105
undefined table 104

SQRT
builtin function 55

square root 55
string constants

length error 104
string too long 104
strings

converting 105
sub-queries

multiple column select list 106
too many 106

SUBSTR
builtin function 55

SUBSTRING
builtin function 55

subtable
cannot delete 115

Syngergex driver 89
synonyms

creating 17
dropping 25

SYSDATE
builtin function 55

T
TABLE

creating 110
table

duplicate column names 105
file does not exist 110

table_name 45
tables

creating 18
dropping 26
required 60
too many 105
undefined in catalog 104
user table description 75

TIMESTAMP
defining for FDT 70

timestamp field
using 79

TO_CHAR
builtin function 56

to_char

format mask 105
TO_DATE

builtin function 57
TO_NUMBER

builtin function 58
transaction

cannot begin 111
TRANSLATE

builtin function 58
translating values 58
TRIMpl driver 98
TRIMpl list driver 98
TRUE 45
TRUNC

builtin function 59
truncated data 106
truncating values 59

U
UCASE

builtin function 59
unimplemented functions 107
Unix

loading dictionary 78
UNKNOWN 45
unknown errors see internal

errors
unsupported SQL 115
UPDATE

GRANT privilege 29
updating

error 111
errors 111

USAGE
GRANT 29

USER
builtin function 59

user dictionary
loading 78

user table definitions
building & loading 69
deleting 78

user table description
columns 75
indexes 77
TABLES 75
xcolumns 77

V
VARCHAR 18
version mismatch

catalog 107
VIEW

creating 110
mismatch 106

view
duplicate column names 105

view_name
 see table_name

VIEWS
duplicate 115

views
GENESISsql Users Guide 121

Index
creating 20
defining 63, 64
dropping 27

Vision driver 100
vtx_shm_addr 98
vtx_shm_file 99

W
WHERE

invalid datatype result 106
invalid ROWID predicate 108

WHERE clause 46
WHERE CURRENT OF 22, 46

X
xcolumns

user table description 77

Z
zoned decimals 116
GENESISsql Users Guide 122

	Preface
	Organization
	Revisions

	The Basics
	Architecture
	Process
	Datasource File
	Catalog utility
	Logging
	Connecting
	PERL example
	JAVA example
	JDBC example

	Initialization SQL Commands

	Genesis SQL Support
	Summaries
	SQL Identifiers
	Transaction Management
	Predicates
	Constraints
	SQL Optimization
	Indexes
	Boolean operators
	Joins and Subqueries

	CREATE INDEX
	CREATE SYNONYM
	CREATE TABLE
	CREATE VIEW
	DELETE
	DROP INDEX
	DROP SYNONYM
	DROP TABLE
	DROP VIEW
	GRANT (Database privileges)
	GRANT (Object privileges)
	ALL PRIVILEGES
	Other Privileges
	Privileges Cascade

	INSERT
	REVOKE (Database privileges)
	REVOKE (Object privileges)
	SELECT
	Keywords & Parameters
	SELECT list (SELECT statement)
	FROM clause (SELECT statement)
	Joins
	Outer Joins
	WHERE clause (SELECT statement)
	GROUP BY clause (SELECT statement)
	HAVING clause (SELECT statement)
	ORDER BY clause (SELECT statement)
	Possibly Nondeterministic Queries

	SET OPTION
	Keywords & Parameters

	SET PASSWORD
	UPDATE

	Built-In Functions
	ABS
	ASCII
	BITAND
	BITOR
	BITXOR
	CASE
	CAST
	CHAR_LENGTH
	CHR
	CONCAT
	CONVERT
	CURDATE
	CURDATETIME
	CURRENT_DATE
	CURRENT_DATETIME
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURTIME
	CURTIMESTAMP
	DATABASE
	DAYNAME
	DECODE
	GREATEST
	HOUR
	IFNULL
	INSTR
	LCASE
	LEAST
	LEFT
	LENGTH
	LOCATE
	LTRIM
	NOW
	NVL
	POSITION
	REPLACE
	REVERSE
	RIGHT
	ROUND
	RTRIM
	SQRT
	SUBSTR
	SUBSTRING
	SYSDATE
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TRANSLATE
	TRUNC
	UCASE
	USER

	GENESIS Dictionary
	Introduction
	GENESIS dictionary
	GENESIS_TABLES
	GENESIS_COLUMNS
	GENESIS_INDEXES
	GENESIS_XCOLUMNS
	GENESIS_AUTHS
	GENESIS_DEPENDS
	GENESIS_FORKEYS
	GENESIS_USERS
	GENESIS_VIEWS

	Drivers by Type

	ADABAS C Driver
	Introduction
	Creating the Dictionary File
	Unix
	Windows
	OpenVMS
	MVS
	Unix, Windows, and OpenVMS
	MVS
	User table description
	Unix, Windows, and OpenVMS
	MVS

	Customization
	Date and Timestamp fields
	Read-only fields
	Periodic Groups and Multivalue fields

	Synergex SDMS Driver
	Introduction
	Making it Work

	OpenVMS RMS Driver
	Introduction
	Making it Work
	Multivalue fields
	Tagged records

	TRIMpl List Driver
	Introduction
	Making it Work

	AcuCobol Vision Driver
	Introduction
	Making it Work

	Micro Focus ExtFH Driver
	Introduction
	Making it Work

	Messages & Codes
	Generic GENESISsql Messages
	Synergex SDMS and SQL
	Creating Tables
	Synergex SDMS-Specific Messages
	SDMS Data Dictionary Utility Messages

	Software AG ADABAS C and SQL
	Software AG ADABAS C-Specific Messages
	FDT Utility Messages

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

