
DesignVision

(DVapp)

Users Guide

March 17, 2023

www.trifox.com

Trademarks
TRIMapp, TRImpl, TRIMqmr, TRIMreport, TRIMtools, GENESISsql, DesignVision,
DVapp, DVreport, VORTEX, VORTEXcli, VORTEXc, VORTEXcobol, VORTEXperl,
VORTEXjdbc, VORTEX++, VORTEXJava Edition, LIST Manager, VORTEXodbc,
VORTEXnet, VORTEXclient/server, VORTEXaccelerator, VORTEXreplicator are all
trademarks of Trifox, Inc.

All other brand and product names are trademarks or registered trademarks of their
respective owners.

Copyright
The information contained in this document is subject to change without notice and does
not represent a commitment by Trifox Inc. The software described in this document is
furnished under a license agreement and may be used or copied only in accordance with
the terms of the agreement. No part of this manual or software may be reproduced or
transmitted in any form or by any means, electronic or mechanical (including
photocopying and recording), or transferred to information storage and retrieval systems
without the written permission of Trifox Inc.

Copyright © Trifox Inc. 1986-2022

All rights reserved.

Printed in the U.S.A.

DesignVision Users Guide

Contents

Preface 1
Organization 1
Revisions 3

1 DesignVision Overview
Designing Applications — DVapp 6
Writing Reports — TRIMreport 7
TRIMpl 7
Final Components 7

DVfast 8
DVmenu 9
 TRIMgen 10
TRIMlib 11
TRIMlis 11
TRIMlsr 11
TRIMmap 11
TRIMmir 12
TRIMrun 13
TRIMsrt 14
VORTEXsql 15

2 Installing DesignVision
DesignVision for OpenVMS 16
DesignVision for Unix 17

3 Application Development
Designing Your Application 19
Data Dictionary 19

Data Dictionary Relationships 21
Using DVapp 22
Window Definition 22

Window Elements 23
Field 23
Action 28
Text 30
List 31

Specifying Complex Fields 33
Using the Define Field dialog 33

4 Creating Forms
Navigation 34

Non-Query Function Keys 35
Query Function Keys 35

Basic Console Activities 36
Save Tables 36
Refresh or Reload 36
DesignVision Users Guide i

Contents
Validate the Data Dictionary 36
Delete Versions 36
Create Default Entries 36
Mask Database Catalog Differences 37
Create Header Files 37
Automatic Documentation 37

Creating and Managing Database Tables 37
Storing and Retrieving Field Definitions 37

5 Writing in TRIMpl
Object Relationships 48
Execution Flow 49
Changing Objects’ Status 50
Variables 50

Inline 50
Triggers and Functions 51

User-Defined Functions and Triggers 51
Field Triggers 52
Validation Triggers 52
Calling Conventions and Return Values 52

TRIMpl Language Syntax 52
Naming Conventions 55
Syntax Extensions 55
Filename Specifications 58

Local 59
Display 59
Database 59
Internet 60
Directory 60

SQL Syntax Translation 61

6 Variables and Triggers
Trigger Types 63

Windows Event Triggers 63
Variable Names 64

Scope 64
DVapp Trigger Types 65
DVreport Trigger Types 66
Stand-Alone Trigger Types 66

Trigger Operations 66
Examples 66

Predefined Variables 67
DVapp Predefined Window Variables 68
TRIMreport Predefined Block Variables 68
Miscellaneous Predefined Variables/Symbols 68

Variable Array Declarations 69
Designer Field Variables 69
Conversion 70

7 Datatypes
char/string 71
datetime 72
glob 72
DesignVision Users Guide ii

Contents
int 72
list 72
numeric 73
rowid 73
trigger 73
Number Operations 74

Arithmetic 74
Bitwise 74
Boolean 74
Operations Involving Nulls 75
Datetime Operations 75
Valid Dates 75
Datetime Manipulation 75
Storing and Retrieving Datetime Data 76

char/string Operations 77
NULLs 77
Auto-Truncation 77
Token Pasting 77
Symbolic Text 78

Glob Operations 78
Datatype Conversions 79

8 Working with Lists
List Components 81
Graphic Lists 82

Type Definitions 82
Creating Lists 85

Query() 86
list_mod() 86
list_open() 86

Partial List Loading 87
Status Information for a List Row 88
Saving a List 88
List Reference 89
Getting Information on Lists 89
Navigating Through Lists 91

Example 91
Displaying (Viewing) Lists 91

Terminal Manager 92
Rules for list_view() 92

Choosing the Correct list_view 93
Reading Data from a List 93
Deleting, Inserting, and Updating Rows 94

list_mod() 94
list_modcol() 94
move_f2l() 94

Summary 94

9 Using TRIMrpc
Creating the TRIMpl Application 96
How TRIMrpc Works 97
DesignVision Users Guide iii

Contents
Client Functions 97
Parameters 98

Error Handling 99
Example 99

10 Debugging & Compiling
Using Debugger from DVapp 100
Running Character Version 102

Command Syntax 103
TRIMreport and Stand-Alone Applications 104
DVapp Performance Tuning 104

Using the Profiler 104
Profiler Script 105

Appendix A Data Dictionary 107
TDD_CATEGORY 107
TDD_DOMAIN 108
TDD_LANGUAGE 108
TDD_TRIGGER 109
TDD_CODE 110
TDD_FORMAT 111
TDD_HELP 112
TDD_LABEL 113
TDD_TEXT 114
TDD_EVENT 114
TDD_LIST 115
TDD_RFIELD 115
TDD_CHOICE 116
TDD_FLAG 116
TDD_ACTION 117
TDD_EDIT 118
TDD_TABLE 119
TDD_STEXT 119
TDD_MENU 120
TDD_BUTTON 120
TDD_GROUP 121
TDD_INDEX 121
TDD_SFIELD 122
TDD_TRIGGERSET 123
TDD_PEVENT 124
TDD_FIELD 124
TDD_COLUMN 125
TDD_IFIELD 126
TDD_FORKEY 127
TDD_LOV 128
TDD_XCOLUMN 129

Appendix B Intialization Files 130
dv.ini 130
trim.ini 141

Appendix C DV File Structure 147
LIB Subdirectory 147

Appendix D Migration Issues 149
Support Files 149
DesignVision Users Guide iv

Contents
Global Window 150

Index 151
DesignVision Users Guide v

DesignVision Users Guide

Preface

This document is a guide to the screens, syntax, datatypes, built-in functions, and
conventions that you need to know to work successfully with DesignVision.

It provides an overview of the DesignVision framework and architecture, as well as
specific sections that guide you through application and report development and
customization.

While this document does not assume that you are a database expert, DesignVision is
typically used to develop applications that access databases and you must be familiar
with any database-brand specific issues.

Organization
This document is divided into the following chapters:

• Chapter 1, DesignVision Overview, provides an overview of the component suite
and the commands for several utilities.

• Chapter 2, Installing DesignVision, describes how to install the software on
Windows, OpenVMS, and Unix.

• Chapter 3, Application Development, discusses elements of application design
such as window and object relationships, actions, window elements, triggers,
and how you can use these components to create effective applications.

• Chapter 4, Creating Forms, is a tutorial.

• Chapter 5, Writing in TRIMpl, describes the language syntax, itemizes
programming rules, and provides some examples of code. This chapter is written
for programmers and assumes some programming knowledge and experience.

• Chapter 6, Variables and Triggers, lists the TRIMpl variables and rules and
parameters for using them.

• Chapter 7, Datatypes, lists the datatypes and rules and parameters for using
them.

• Chapter 8, Working with Lists, discusses lists, one of the elements that makes
TRIMpl such a powerful and flexible database programming tool. This chapter is
written specifically for programmers.

• Chapter 9, Using TRIMrpc, describes how to use the remote procedure call (RPC)
function to access stand-alone .run files from anywhere on your network.

• Chapter 10, Debugging & Compiling, gives examples and procedures, as well as
tips, on debugging your TRIMpl code. This chapter is also written specifically for
programmers.

Appendixes detail the database dictionary, the DesignVision file structure, and discuss
issues that arise when migrating from character-based applications to windows-based
ones.
DesignVision Users Guide 1

 Preface Organization
Background
Trifox Inc. has been serving the relational database market since 1984 through consulting
and the development of software products. In 1987, Trifox created SQL*QMX for Oracle.
This easy-to-use, powerful querying and report writing tool, which is based on IBM’s
QMF, continues to be used at thousands of sites. In 1989, Trifox created TRIMtools, a
family of application and reportwriting tools now known as DesignVision. DesignVision
was developed in response to the OLTP requirements of several large application
vendors.

Database Access
VORTEX is an integrated family of products that allows nearly any production
application to access SQL data:

• On any or all of the major relational databases.

• Across networks.

• Across platforms.

• With a dramatic increase in the number of concurrent users.

• Without any additional hardware.

In a client/server or multi-tier configuration, VORTEX makes it possible for your SQL
applications to access data on different platforms over one or more network
configurations. Currently it supports only TCP/IP.

Inherent in this approach are services that allow production applications originally
written for one relational database (such as Oracle) can access the same data on another
database (such as Informix), even if it is spread across different databases.

VORTEX Precompilers for C and COBOL, as well as a variety of program interfaces,
allow existing SQL programs to take full advantage of VORTEX services such as
performance enhancement, transaction monitoring, and flat-file database access.

With VORTEXaccelerator in your configuration, you dramatically increase the number of
concurrent users who can log on to a specific SQL production application. Your users
experience faster performance and you won’t have to change any programs or add any
hardware.

Application and Report Development
DesignVision DVapp lets you design, generate, and maintain forms-based applications.
You can easily port the pop-up windows, customizable menus and submenus, and
custom keyboard assignments, in fact the entire application, to Windows .NET, Unix,
OpenVMS, or HTML5 with no extra effort.

The reportwriter, TRIMreport, lets you create simple reports quickly, or complex reports
with absolute confidence in their power.

When you want to write stand-alone applications (including triggers) without a user
interface, the TRIMpl 4GL language gives you the freedom you want. The procedural
language has over 100 database-specific functions that help you write powerful
applications in very little time.
DesignVision Users Guide 2

 Preface Revisions
Reaching Legacy Data
GENESISsql is a SQL processor that accesses low-level data sources such as ISAM,
SDMS, ADABAS, RMS, and MicroFocus and makes the data accessible to VORTEX
clients. You can add GENESIS data sources to a VORTEX system in a matter of days,
simplifying what used to be an enormous task.

Conventions
Screen shots in this manual come from the Windows version of our software.

Trifox documentation uses the following conventions for communicating information:

Example Describes

CHOOSE REPORT > [F3] > Press [F3] on the CHOOSE REPORT menu and ...

Right-click Clicking the right mouse button.

Left-click Clicking the left mouse button.

connect_string Replace italicized text with your own variable.

vtxnetd Text in bold typewriter style represents strings
that you type exactly as they appear in the
manual.

Support
If you have a question about a TRIFOX product that is not answered in the
documentation (paper or online), contact the Customer Support Services group at:

• support@trifox.com

• Trifox Customer Support Services
2959 Winchester Boulevard
Campbell, CA 95008
U.S.A.

• 408-796-1590

Revisions

September 1999
First production version of manual.

November 1999
Beginning page 82, added information for two new graphic lists: graphic_type_poly and
graphic_type_bezier as well as providing examples for most other types of graphic lists.
DesignVision Users Guide 3

 Preface Revisions
December 1999
Updated documentation on the fast application builder, DVfast, to reflect changes in
product.

Corrected errors in graphics list explanation.

Added documentation for new list_open() option, dir!. Changed all documentation
to reflect change in filenames from gui.* and gmc.* to dv.* in 5.1.0.0.1. Corrected
miscellanous errors.

January 2000
Updated information about Graphic Lists, including more intuitive element names and
enhanced information about graphic list ID elements.

May 2000
Added information about TRIMpl automatic datatype conversions in expressions
(“Datatype Conversions” on page 79).

Added a general section on the various ways to specify filenames (“Filename
Specifications” on page 58).

Modified the general section on various ways to specify filenames and URLs. Moved the
information about dir! to the same section, so it now covers local, gui!, vortex!, net!,
and dir!. (“Filename Specifications” on page 58).

November 2000
Added group syntax in TRIM/PL chapter.

August 2001
Added XML information to List chapter.

Oct ober 2009
Added local variable keyword in TRIM/PL chapter.

February 2012
Updated the predefined events.

November 2012
Added graphic_type_popup.

September 2015
Removed trimgen -t option.

January 2020
New trimmir options.
DesignVision Users Guide 4

 Preface Revisions
February 2021
Added trimgen -t option.

November 2022
Added glob datatype.

March 2023
Added symbolic text.
DesignVision Users Guide 5

DesignVision Users Guide

Chapter 1

DesignVision Overview

Trifox’s DesignVision helps you develop applications and reports that are optimized for
database access. The collection of design and development components that comprise
DesignVision allow you to rapidly develop applications, customize them on the fly, and
create extensions quickly and easily. You control not only the application designs
themselves, but also the design process, to meet your organization’s exact needs.

If you are a programmer, the data dictionary provides increased automation. You can
continue to build function libraries using any editor and the built-in functions, taking
advantage of DesignVision’s exceptional attention to re-use.

For user interface experts, using one of the DesignVision designers lets you build and
modify prototypes quickly.

When everyone is satisfied with the designs, you compile and debug application files.
Trifox supplies several tools to help evaluate the application code for both the reports
and applications.

The end result of the process is machine-independent binary code with data references
that are offset-based and easy to relocate. You can compile the application file code on
one machine and execute it on other types of machines, including to and from 32-bit /64-
bit systems.

Your end users see and use the application combined with a runtime module that is
specific to their machines. You develop once and can deploy on any or all of Windows,
Windows .NET, or HTML5 display platforms.

Using DesignVision for applications, report writing, and stand-alone modules, lets you
harness the true power of client/server application development and take advantage of
the flexibility provided by database independence.

Designing Applications — DVapp
You use DVapp to create applications of one or more windows. A window is a self-
contained sub-application that can include text and fields. In a conventional data-entry
application, a window represents an underlying database table.

You can use DVapp with all its defaults to get a simple application up and running, or
you can build your own definitions of windows, assign actions to fields in an application,
and file them in the default library or data dictionary for future use.

DVapp lets you control the internal processing of the application, such as interaction
with the database, which is especially important in a large user environment. These
applications retrieve data from the database and put it in a list in memory where the rich
set of list functions allow you to work with the data in the exact ways your users need.
When all modifications are completed, other functions commit the data to the database.
DesignVision Users Guide 6

Chapter 1 DesignVision Overview Writing Reports — TRIMreport
Writing Reports — TRIMreport
TRIMreport allows you to create reports from data stored in your database. It consists of
three main parts, all of which operate independent from the database:

• Designer

• Generator

• Runtime

The designer creates ASCII files that allow portability across platforms. The generator
creates a binary file for a particular operating environment and executes the report.

TRIMpl
Both DVapp and DVreport use a language similar to C to define the actions you specify.
When you create your own actions, or modify defaults, you also use this language, which
is called TRIMpl. TRIMpl includes over 100 functions that handle lists in memory,
display management, and interactions with relational databases.

You can create a block of TRIMpl code in a separate file as a stand-alone application,
which is useful for writing utilities that load databases tables from ASCII files and
manipulate data in databases. A more complicated example can be found at
www.trifox.com/trimpl/index.html. Other applications can call the stand-alone piece as
an external function that can receive parameters and return values.

TRIMpl functions are described at www.trifox.com/trimpl/index.html.

Final Components
The final pieces to the DesignVision environment allow you to compile, test, and run the
applications and reports that you’ve created.
DesignVision Users Guide 7

Chapter 1 DesignVision Overview Final Components
DVfast
DVfast uses the data dictionary (DVdd) to build applications. For each DVfast
application name you specify, DVfast uses the information in the DVdd TDD_FAST table
to build an application.

dvfast db_login appname [appname …] [options]

Options

-b Use button groups.

-cx,y Coordinates of the first window let you place your application on
the user’s screen. The default is 0,0.

-g Use grid windows.

-llanguage Specifies the application’s language. The default is ENG.

-wx,y Window size. The default is 24,80.
DesignVision Users Guide 8

Chapter 1 DesignVision Overview Final Components
DVmenu
DVmenu helps you manage window menu definitions.

Window menu definitions are stored in the DesignVision data dictionary table called
TDD_MENU but are rather complicated to manage. DVmenu simplifies this task by
providing a graphical layout of the menu. You simply point to the menu item you want
to modify or where you want to add sibling or child menus. You can also modify the
trigger that is associated with the menu item.

 You can run DVmenu as a stand-alone application:

DVmenu db_login [options]

You can also call it from DVapp by choosing Menu->Edit from the designer menu bar.

If you run DVmenu from DVapp, the optional parameters are inherited from the
application.

Options

-tset Specifies the trigger set to use. The default is STANDARD.

-aapplication Specifies the application to use. The default is TDD.

-llanguage Specifies the language to use. The default is ENG.

-pproject Specifies the project to use. The default is TDD.
DesignVision Users Guide 9

Chapter 1 DesignVision Overview Final Components
 TRIMgen
TRIMgen compiles TRIMpl and DesignVision design files. You run the resulting binary
files with TRIMrun.

trimgen design_file [design_file …] [options]

You can compile any number of design files at a time simply by listing them all, but they
all use the same set of options per command.

Options

-a Compiles stand-alone TRIMpl file (not created with DVapp or DVreport).

-c2 Unicode (2 byte) chars.

-Dn=v Define n=v

-futrig Activates database function logging. utrig is the user trigger or routine
called by the logging mechanism. The first parameter is the function name.
The rest of the function parameters, if any, follow. utrig is always called
before the function is invoked. The logged functions are exec_row(),
exec_sql(), exec_proc(), commit() and rollback().

-g Inserts DesignVision debugger code into the binary file. Defines the DEBUG
conditional compile symbol.

-i Creates a .mir (machine independent run) file. This ASCII file can be ported
to any machine and changed to .run format by running TRIMmir.

-lfile Uses specified library file in place of trim.fnc or dv.fnc.

-m Display and display the modified triggers warning.

-n Disable automatic variable declaration.

-o Enhanced optimization.

-p Inserts DV profiling code into the binary file. Profiling results are written to
design_file.prf.

-r Print the filename(s) opened by TRIMgen.

-s[file] Inserts the symbol table into the binary file. Required for name_in(). Also
writes symbol table to optional file, file.

-t Inserts tracking code into the run file. When an error occurs, the text
“[<trigger name>, line: <line #>]” is appended to the error text.

-u Causes TRIMgen to create a windows application, rather than the default
character-based one. Defines the GUI conditional compile symbol.

-w Displays all unreferenced variables and unreferenced user triggers.
DesignVision Users Guide 10

Chapter 1 DesignVision Overview Final Components
TRIMlib
This tools speeds up the trimgen process by converting one or more function libraries
into an indexed binary file.

trimlib library_file [-l | [CAR file ...]]

Options

-l Displays the current contents of library_file.

TRIMlis
Diagnostic and reporting tool for DesignVision applications and reports.

trimlis design_file [list_file] [options]

The default list_file is design_file.lis.

Options

-c<str> Database connection string to access the dictionary.

-f Displays only FIELD objects.

-m Displays messages in addition to writing them to list_file.

-n Displays trigger text without line numbers.

-o Displays objects only (WINDOW/BLOCK, FIELD, TRIGGER).

-s Adds WINDOW/BLOCK begin/end separator text so diff can more easily
resync.

-t Displays only trigger text.

TRIMlsr
This tool enhances the performance for production systems by loading all specified run
files into shared memory. Use it only when your application is complete.

trimlsr [run_file …] [options]

TRIMlsr has one option:

-lfilename Load all .run files listed in filename.

TRIMmap
This diagnostic and reporting tool for TRIMreport shows how report blocks are
connected.

trimmap design_file [map_file]
DesignVision Users Guide 11

Chapter 1 DesignVision Overview Final Components
TRIMmir
Converts files from one format to another.

trimmir source destination [option]

If no option is specified, then source is assumed to be a mir (Machine Independent
Runfile) file and destination will be a run file.

-i Convert .run file to .mir file. Same as -r2m.

-S2D Convert S(ource) to D(estination).
S and D: g (gap), j (json), m (mir), r (run), x (xml)

The only restriction is that the source and destination file types cannot be the same.
DesignVision Users Guide 12

Chapter 1 DesignVision Overview Final Components
TRIMrun
TRIMrun executes compiled code, which makes the applications, reports, and stand-
alone applications interactive. It is also called the “runtime.”

trimrun run_file [[db_login] [out_file]][options]

The run_file must have a .run file name extension.

You must specify db_login only if the user is going to interact with a database. You can
also specify the database connection in the application.

Specify an out_file with report designs to direct output to the file name given. This
example command creates a report file named myrep.out:

trimrun myreport myname/mysecret myrep

Options

-dn Displays debug error number n. Use -d with no error number to see all
errors.

-fstring Specifies a string to use for the form feed. The default is a universal form
feed command. To specify “no form feed” use the switch with no string
argument.

-kfilename Inputs (plays back) keys from filename.

-m Displays memory usage (number of bytes allocated).

-ofilename Outputs (records) keys to file filename.

-tfilename Shows execution trace where filename is output file; if no filename
is specified, trace goes to stdout.

-p parms This option, which must be listed last, lets you pass information to the
application on the command line.

You must put this option at the end of the command followed by all the
parameters (everything following this option is assumed to be a
parameter). This example passes the string “myname” into myapp.app:

trimrun myapp -p myname

NOTE: Attempting screen I/O results in errors.
DesignVision Users Guide 13

Chapter 1 DesignVision Overview Final Components
TRIMsrt
TRIMsrt is used to create standalone executable programs with the TRIMgen runtree
output embeded in the executable file.

trimsrt <exec file> <RUN file> <new exec file> [-p <parm>...]

The <exec file> is one of trimrun.10k, trimrun.50k, or trimrun.100k. The values indicate
the maximum size runtree that can be stored in the executable.
DesignVision Users Guide 14

Chapter 1 DesignVision Overview Final Components
VORTEXsql
This utility executes SQL statements that you can either type in from the command line
or have read from a file. VORTEXsql does not perform any syntax checking. The
statements are assumed to be valid SQL statements for the target database. Currently this
utility only performs function remapping.

 vtxsql [options]

Options

/cconnect_string Connects to a database.

/x c | r[u] Commits or rolls back transaction and, if you specify “u,” start
a read/write transaction.

/dtable Describes a table.

/rfilename Runs statements/commands in file filename. Files can be
chained, but not nested.

/ocmd parms Executes a driver command (cmd) using the optional
parameters you specify. Look for cmd values in vortex.h

/m mask Sets datetime format mask (default: MM/DD/YY).

/nnull Specifies what to display for NULL values.

/vy|n Verbose messages. If you specify “n”, then only errors are
reported.

/b Displays database request block.

/d Displays database request block.

/? or /h Displays help for this screen.

/q Quits session and exits.
DesignVision Users Guide 15

DesignVision Users Guide

Chapter 2

Installing DesignVision

DesignVision for OpenVMS
The DV for OpenVMS files are distributed in saveset format from the Trifox ftp site,
ftp.trifox.com. The following procedure describes how to install and setup DesignVision
on your client machine after downloading them from the ftp site.

☞ Installing on OpenVMS

1. Prepare for installation.

Create a home directory for the software. To create trifox in DKA100:[USR], type

create/dir dka100:[usr.trifox]

2. Install the software.

If you received the media on a DAT tape or TK50 and the device is mka500:

set def dka100:[usr.trifox]
mount/for mka500:
backup/log mka500:install.bck/save []/new
dismount mka500:

☞ Customizing files and environment

LOGIN.VTX is file that contains a series of logical definitions and symbol
assignments. To update the file for your installation, begin by executing it inside the
SYS$LOGIN:LOGIN.COM file, as well as the LOGIN.COM files of your users.

1. Replace each xxxx:[yyyy] with the actual DV module location (the device and
directory name) in the following lines

$ ASSIGN/GROUP “xxxx:[yyyy]” TRIM_HOME
$ ASSIGN/GROUP “xxxx:[yyyy.obj]” TRIM_CHNL
$ ASSIGN/GROUP “xxxx:[yyyy.bin]” TRIM_EXEC

For example,

$ ASSIGN/GROUP “DKA100:[usr.trifox]” TRIM_HOME

2. If you are using VORTEXaccelerator, replace xxxx:[yyyy] with the actual
TRIM_HOME device and directory name in the line

$ ASSIGN/GROUP “xxxx:[yyyy]share.file TRIM_SHM_FILE
DesignVision Users Guide 16

Chapter 2 Installing DesignVision DesignVision for Unix
3. Replace XXXX with your VORTEXaccelerator Group in the line

$ASSIGN/GROUP “XXXXX” TRIM_MUX_NAME

4. Replace XXXXX with the name of your system editor in

$ ASSIGN XXXXX EDITOR

5. Activate the changes you’ve made by entering the command:

$@LOGIN.VTX

6. Issue the command to create the necessary subdirectories and move all the files to the
appropriate locations.

$@INSTALL.COM

DesignVision for Unix
The DV for Unix files are distributed in compressed (gzip) .tar format from the Trifox
FTP site, ftp.trifox.com. The following procedure describes how to install and set
up DesignVision on your client machine.

The following instructions are for the evaluation version of DesignVision. If you are
downloading and installing a licensed copy, follow the instructions you received with
your license.

☞ Installing on Unix

1. Create a home directory for the software. For example, to create trifox
in /usr/local, type

mkdir /usr/local/trifox
chmod 664 /usr/local/trifox

2. Transfer (ftp) the software from ftp.trifox.com into the directory you just
created. If you are downloading evaluation software, use anonymous/email as the
username and password to log in.

cd /usr2/local/trifox
ftp ftp.trifox.com/pub/products
cd your_target_os
bin
get eval.tar.Z
bye

3. Unzip the *.tar file and use the tar command to open the package of files.

gzip -d eval.tar.Z
tar -xf eval.tar
DesignVision Users Guide 17

Chapter 2 Installing DesignVision DesignVision for Unix
☞ Customizing the files and environment

1. Specify TRIM_HOME

All components rely on the TRIM_HOME environment variable to find the files they
need. The customization instructions assume that you have installed the DV files in
the directory /usr/local/trifox. Set TRIM_HOME in your logon script(s) as well
as those of your users.

For the C shell:

setenv TRIM_HOME /usr/local/trifox

For all other shells:

TRIM_HOME=/usr/local/trifox;export TRIM_HOME

2. Change your current directory to $TRIM_HOME/obj by typing:

cd $TRIM_HOME/obj

3. Customize the makefile, following the directions for Unix platform in the VORTEX
Installation and Operations Manual.
DesignVision Users Guide 18

DesignVision Users Guide

Chapter 3
Application Development

In 4GL database application development, you create applications, also called forms, that
let your users store, change, retrieve, and work with information in a database. With
DVapp, you can design forms interactively: arranging information on your screen and
testing it as you go.

A form consists of windows, which contain fields, buttons, or lists. In simple
applications, each window relates to a single table in the database. More complex
applications may bring together data from several tables or integrate graphics.

The application windows are actually blocks of code that contain the information
necessary to control the application:

• SELECT statements

• Text areas

• Fields, buttons, lists, checkboxes

• Triggers

Designing Your Application
You can execute a form at any time to quickly validate your design as you develop.
When you are satisfied with the results, you store it in a file, which you (or anyone with
permission) can move to any DVapp-supported hardware and software platform.

DVapp is tightly integrated with the DesignVision Data Dictionary (DVdd). This
integration makes it simple to maintain a consistent look and feel among applications.
For example, you can define the [TAB] key to work the same in all applications. Every
time you create a new window, the [TAB] key code is brought in from the DVdd. If you
define field behaviors, such as validations in the DVdd, every application that uses that
field maintains the same rules for data input.

Data Dictionary
The Data Dictionary (DVdd) is a set of database tables that stores descriptive information
about the DesignVision and database objects in your application. Storing screen field,
button, and key definitions in the DVdd lets you share these objects throughout your
application.

More importantly, however, the DVdd maintains relationships between objects. Foreign
keys, for example, are automatically defined by the DVdd tables without you having to
do more than specify them.

DesignVision provides several tools to manage the dictionary and to find and clean up
any errors. These tools, which are part of the DVdd Console, include:

• Screen forms to ensure that your entries are always consistent.
DesignVision Users Guide 19

Chapter 3 Application Development Data Dictionary
• A structure checker that examines all the DVdd relationships and verifies that no
orphan records exist.

• SQL scripts to move the DVdd from one system to another.

You can see from the entity relationship diagram on the following page that TDD_CODE
relies on two tables:

• TDD_CATEGORY

• TDD_LANGUAGE

The TDD_CODE.COD_LAN_NAME column entry must exist in the
TDD_LANGUAGE.LAN_NAME column and the TDD_CODE.COD_CAT_PROJECT column
entry must exist in the TDD_CATEGORY.CAT_NAME column.

Using the DVdd Console to insert, update, or delete records ensures that the integrity of
these relationships is maintained.

For example, if you attempt to delete a record in TDD_LANGUAGE and a record in
TDD_CODE relies on it, you receive a prompt to edit the TDD_CODE table to delete that
record. Of course, deleting the record may cause a record in TDD_CHOICE to require
deletion and so on. In addition, the structure checker identifies unused records so you
can delete them easily.

NOTE: Do not try to use other tools to modify the DVdd. You run the risk of severely damaging
the DVdd to the point that it may no longer be usable.
DesignVision Users Guide 20

Chapter 3 Application Development Data Dictionary
Data Dictionary Relationships

T
D

D
_C

AT
E

G
O

R
Y

T
D

D
_D

O
M

A
IN

T
D

D
_T

R
IG

G
E

R
T

D
D

_L
A

N
G

U
A

G
E

T
D

D
_C

O
D

E
T

D
D

_E
V

E
N

T
T

D
D

_L
IS

T

T
D

D
_R

F
IE

LD
T

D
D

_T
A

B
LE

T
D

D
_X

C
O

LU
M

N

T
D

D
_C

O
LU

M
N

T
D

D
_I

F
IE

LD

T
D

D
_F

O
R

K
E

Y
T

D
D

_L
O

V

T
D

D
_I

N
D

E
X

T
D

D
_E

D
IT

T
D

D
_L

A
B

E
L

T
D

D
_F

IE
LD

T
D

D
_S

F
IE

LD

T
D

D
_S

T
E

X
T

T
D

D
_F

O
R

M
AT

T
D

D
_H

E
LP

T
D

D
_C

H
O

IC
E

T
D

D
_G

R
O

U
P

T
D

D
_T

R
IG

G
E

R
S

E
T

T
D

D
_P

E
V

E
N

T

T
D

D
_B

U
T

TO
N

T
D

D
_A

C
T

IO
N

T
D

D
_T

E
X

T

T
D

D
_F

LA
G

T
D

D
_M

E
N

U

Entity relationship diagram of the meta data.
DesignVision Users Guide 21

Chapter 3 Application Development Using DVapp
Using DVapp
The rest of this chapter documents the objects and dialog boxes you use to design forms
in DVapp. It begins with a list of window attributes that govern appearance and behavior
in applications. Then it describes each window element dialog box.

Every window has a comment area for your internal use. There are no restrictions on the
contents of the comment area and it has no effect on the runtime behavior of the
application.

Window Definition
To see this dialog box, select (with alternate button) the window from the Window Map
and choose Define from the popup list.

This dialog box shows the basic attributes for each window.

Fields

Window Not editable. Name of the window.

Title Text that appears in the window border.

Table Table associated with the window.

Trigger Set The name of the trigger set associated with this window. This selection
controls the contents of the Window, Update, Record, Query, and
Initialization triggers that are loaded for the window.

Row/Col The row and column values indicate the upper left corner of the
window position on the screen. These values are based on the font type
that you choose.

Rows/Cols The height (in rows) and width (in characters) indicates the size of the
window.

Max Data Rows Number of rows to display at a time. (Useful only for multi-row
(record) windows.)

Lines per Row Number of lines to allow for each row. (Useful only for multi-row
(record) windows.)
DesignVision Users Guide 22

Chapter 3 Application Development Window Definition
Action Buttons

OK Saves the settings as they appear on the screen.

Cancel Returns to last-saved settings.

Default Retrieves the field list for the table from the Console and creates a
default field layout in the window.

Reload Reloads the Window, Query, Initialization, Record, Table, Update
triggers as well as the Menu and Select statement.

Dictionary Activates the DVdd Console.

Window Elements
Windows contain a variety of elements such as fields and buttons, that determine the
actions that users can take. In their simplest form, windows let users retrieve, modify,
and update the data in one table of the database. More complex windows can handle
several tables, switch connections between databases, perform text editing, and perform
a variety of other tasks. In this section, we examine all of the elements of a window.

Field
To display the Describe Field dialog box, select the field (with alternate button) from the
Window Painter and Modify from the popup menu.

This field was created by selecting all columns for the table TPL_ZIP as the default for the
CONFIRM_ORDER window. Justification is typically right, unless you change it and the Label
length is the same as the number of characters in the default Label.

The Define Field dialog box allows you to modify your application’s fields. If, when you
define (or create) a window, you choose a table and select the Default action, one field is
created for each column in the table. The DVdd supplies all the field description
information and you cannot change the information in the disabled (grey) fields.
DesignVision Users Guide 23

Chapter 3 Application Development Window Definition
The field information is divided into three sections: General, non-complex, and complex
information. Complex fields are those that display data as radiobuttons, checkboxes, and
lists. Non-complex fields are the familiar data entry fields.

Fields

GENERAL

Name Not editable. The column name associated with the field. Two TRIMpl
variables are implicitly created for this field: Name and Name_d.

Seq This number represents the field’s navigation position. When the end
user tabs through the fields on the ORDER window, TPL_ZIP is the 7th
field. This value reflects the creation order of fields, and you should edit
it for greatest end user convenience.

Type Not editable. The field’s datatype.

Label len The label’s display length.

Label The field’s label.

NONCOMPLEX

Disp The display length of the field. If the value is non-zero and less than the
actual field length, the field is scrollable.

Mask Not editable. The field mask, from the DVdd.

COMPLEX

Height The height of the complex field’s rectangle.

Width The width of the complex field’s rectangle.

Dimensions The number of rows or columns to use to layout the field’s items. If the
Orientation is Horizontal, then this sets the rows; otherwise it sets the
columns.

Enum The values to enumerate in the complex field.

Type Button creates a radiobutton or checkbox display. List creates a list
display.

Orientation This value only applies to button type fields. Combined with Dimension,
it determines the layout, horizontal or vertical.

Dropdown If checked, specifies that List fields are drop-down.

Pixel If checked, converts the height and width values to pixels.
DesignVision Users Guide 24

Chapter 3 Application Development Window Definition
Action Buttons

OK Saves the settings as they appear on the screen.

Cancel Returns to last-saved settings.

Trigger Opens a a window in which you can view or edit the trigger text. See
also “Field Triggers” on page 52 and “Designer Field Variables” on page
69.

Validation Opens a a window in which you can view or edit the trigger text. See
“Validation Triggers” on page 52 for more details.

Drop Drops the field from the window.

Tables Shows all tables and correlation variables that are associated with fields
in this window.

Attributes Detailed in the following section.

Foreign Key Detailed in the following subsection.

Reload Reloads the field’s definitions from the DVdd.

Dictionary Activates the DVdd Console.

There are five categories of field attributes: fixed, dynamic, presentation, font, and user
attributes. Fixed attributes can only be modified by changing the DVdd and reloading the
field.
DesignVision Users Guide 25

Chapter 3 Application Development Window Definition
Fixed Attributes

Database Specifies the database field (loaded by the query) that is associated with
the column.

Not Null Cannot be null (used in input mode, which checks for nulls).

Unique Creates a unique identifier substitute. Use this attribute for all fields
that together could create a pointer to a specific row for a SELECT.

List Specifies that the field is part of a window list and reserves a spot in the
window-name.WL for data from this field. Specifying database
automatically sets this attribute “on”.

 Protected Sets the field to be read-only. Prevents users from typing in the field.

No Update Specifies that value is not tested for a lockrow update, nor is the value
written to a database on UPDATE.

No Regen Protects against a global data dictionary update (regeneration).

Query Specifies that the field cannot be null when a query is executed. (Query
building actions typically use raw input mode, which does not check
for nulls.)

User Attributes Allows you to access and apply user-defined attributes, which are used
by field_* operations.

default
system
fixed
ansi
field
label
button

Specifies the appearance of text in your application. The specifications
for each font type are saved in WINDOW_DEFAULT_FILE. If this file
does not exist, the values inherit the current window settings.

Dynamic Attributes

Fixed Specifies that user entry must fill the field.

Uppercase Automatically changes user input to upper case.

No Echo Does not display user input.

Hidden Does not display the field, but keeps values available for calculation.

 Reset Clears the field of existing text as soon as users click in the field.

Autoskip Specifies that cursor moves to next field as soon as user enters data.

Raw Input Specifies to use raw input (no validation) regardless of the page,
window, or form’s mode.
DesignVision Users Guide 26

Chapter 3 Application Development Window Definition
Presentation Attributes

No Border Specifies not to draw a box around the field. Used with transparent
emulates dynamic labels.

Transparent Specifies the same background as the underlying window. Used with
no border emulates dynamic labels.

Foreign Key dialog box
The only item you can change in the Foreign Key dialog box is the list of value (LOV)
sequence. This determines which LOV Select, LOV Where, and LOV OrderBy is used.

Foreign Key The foreign key table and column.

Value Column Additional foreign key column.

Value Additional foreign key value.

LOV Select the LOV columns.

LOV WHERE The LOV WHERE clause.

LOV OrderBy The LOV Order By clause.
DesignVision Users Guide 27

Chapter 3 Application Development Window Definition
Action
To view an action dialog box, select an object (with the alternate button) and click Modify
in the popup menu that appears.

Actions can take the shape of simple action buttons, or radio buttons or check boxes.

Fields

Name Not editable.

Label The name that appears on the action button.

Row/
Column

These values, which are based on the font type you choose, indicate the upper
left corner of the button or checkbox relative to the upper left corner of the
owning window.

Height/
Width

The height (in rows) and width (in characters) indicates the size of the action
item. Typically the width is a few characters wider than the Name, which
appears as the item’s identifier.

 Actions This selection list shows all the actions for a window. You can select and modify
any action without having to find, select, and edit the window object itself.

Checkboxes

Bit Map Not editable. If checked, the button displays the bitmap defined in the DVdd
for this action.

Pixel Size If an action has a bitmap, converts the height and width values to pixels.

Pre-Validate Not editable. If checked, indicates a pre-validation trigger.
DesignVision Users Guide 28

Chapter 3 Application Development Window Definition
Action Buttons

OK Saves the settings as they appear on the screen.

Cancel Returns to last-saved settings.

Trigger Opens a a window in which you can view or edit the trigger text. See also
“Field Triggers” on page 52 and “Designer Field Variables” on page 69.

Dictionary Opens the DVdd Console.

Rename Allows you to rename an action button to an existing definition in the DVdd
when migrating an existing V4 application to DVapp.
DesignVision Users Guide 29

Chapter 3 Application Development Window Definition
Text
To see this dialog box, select a text object (with alternate mouse button) and choose
Modify.

Text allows you to create labels, instructions, and other comments to customize the application
windows and dialog boxes.

Fields

Text Not editable. Shows the text that appears in the window. Text cannot
wrap. You must create a new text item for each line of text in your
window.

Row/
Column &
Width

These values, which are based on the font type you choose, indicate the
upper left corner of the button or checkbox relative to the upper left
corner of the owning window. Width shows the number of characters that
are visible in the text item.

Justification You can justify the text left (the default), center it, or make it right
justified.

Font The same fonts are available as for the field items. See “Fixed Attributes”
on page 26.

Action Buttons

OK Saves the settings as they appear on the screen.

Cancel Returns to last-saved settings.

Reload Reloads the Window, Query, Initialization, Record, Table, Update
triggers as well as the Menu and Select statement.

Dictionary Activates the DVdd Console.

Rename Allows you to rename an action button to an existing definition in the
DVdd when migrating an existing V4 application to DVapp.
DesignVision Users Guide 30

Chapter 3 Application Development Window Definition
List
To see this dialog box, select a list object (with alternate button)

One unique use of a list is to display graphics, as in this example.

 Fields

Name The list name.

Origin The row and column values indicate the upper left corner of the window
relative to the upper left corner of the underlying window. Your choice
determines these values.

Size The height (in rows) and width (in characters) indicates the size of the list
item. Typically the width is a few characters wider than the longest line it
displays.

Lists Shows all lists in the window.

Radiobuttons

List Type You can choose from the following:
• Standard — Single choice list. Uses system font.
• Multi — End user can select multiple items from the list.
• Combo — This list shows a single field through which end users can

scroll to make their selection.
• Combo w/Drop — Like the Windows standard, this list type shows a sin-

gle field with a down arrow. When end users click on the arrow, the list
“drops down” in a display box.

• Graphics — DVapp’s unique method for displaying bitmaps dynami-
cally. See “Graphic Lists” on page 82 for a complete description.
DesignVision Users Guide 31

Chapter 3 Application Development Window Definition
Checkboxes

Fixed Font Specifies fixed font. Otherwise, DVapp uses the system font.

Local Keys Specifies that the direction keys --- [Up Arrow], [Down Arrow], [Left],
[Home]}, and so on --- are under window control. If you don’t select this
item, the local keys use TRIMpl key trigger settings.

Pixel Size If checked, converts the height and width values to pixels.

Action Buttons

OK Saves the settings as they appear on the screen.

Cancel Returns to the settings previously saved.

Trigger Opens an editing window that specifies the actions executed when an end
user presses the button (or checks the box).
DesignVision Users Guide 32

Chapter 3 Application Development Window Definition
Specifying Complex Fields
DVapp supports simple edit fields — the familiar screen fields where you can type in
data, either character or numeric, and where this data is returned from a database
retrieval — and complex fields.

Complex fields’ presentation is controlled through:

• The DVdd definition

• The Define Field dialog box

Complex fields are presented as radiobuttons, checkboxes, and lists, but the actual
underlying data is an integer. Each bit position in the integer represents one of these
three object elements.

Using the DVdd
You control whether the field is an edit, list, or complex field with your TDD_SFIELD
specification and refine a complex field definition with TDD_GROUP as follows:

TDD_SFIELD Specification Field

Edit name Regular edit field

List name List

Group name Complex field

TDD_GROUP Specification Complex Field

GRP_FLG_NAME Multi-choice field (checkbox, multi-tag list)

GRP_CHO_NAME Single-choice field (radiobutton, single-tag lists)

Regardless of single or multi-choice, you define the complex field’s values in the
TDD_CODE. These values can be as simple as Yes and No or as complex as range of shoe
sizes.

Because the actual database field is always simply an integer, the application can actually
query on these checkboxes or radiobuttons just as though they were regular edit fields.

Using the Define Field dialog
The Define Field dialog (see “Field” on page 23) lets you further customize the look of the
complex field. In the section called Complex, you use the height and width parameters to
define the containing area for the complex field. The dimension parameter, in
conjunction with orientation, let you control the number of rows or columns the
radiobuttons or checkboxes use for display. Dimension does not apply to List types.

Because the complex field’s basic variable is a simple integer, you manipulate the
complex field’s data using regular TRIMpl code and functions. Any changes that your
application makes to that variable (querying the database, for example) are automatically
reflected on the screen.
DesignVision Users Guide 33

DesignVision Users Guide

Chapter 4

Creating Forms

This chapter is a tutorial that shows you how to perform the basic functions of the DVdd:

• Create and manage database tables

• Store and retrieve field definitions

You must define objects like fields and buttons in the DVdd before you can use them. As
you work with the tutorial, notice that all tables eventually depend on one or more of the
four root tables:

• TDD_CATEGORY

• TDD_DOMAIN

• TDD_LANGUAGE

• TDD_TRIGGER

Navigation
As you work through the tutorial you see that you can [TAB] or click your way around
the fields in the DVdd table forms. If you modify a field that has a foreign key, the
structure checker checks your value against the foreign key. If your value isn’t found, the
Console presents a List of Values prompt from which you pick an existing value.

Look at the COL_FLD_NAME in TDD_COLUMN (also noted as
TDD_COLUMN.COL_FLD_NAME). Whatever value you put in there must exist in
TDD_FIELD.FLD_NAME. If it does not, then the LOV for TDD_FIELD.FLD_NAME
appears when you attempt to leave the COL_FLD_NAME column.

If the field is a foreign key for another table, the Console prompts you to modify that
table's record(s) before continuing with your change. Using the previous example in
reverse, if you modify the TDD_FIELD.FLD_NAME column and
TDD_COLUMN.COL_FLD_NAME entries point to it, you are prompted to modify
TDD_COLUMN.COL_FLD_NAME.

[Enter] in a foreign key field opens the table application for that foreign key. For
example, in the TDD_COLUMN table, COL_FLD_NAME relies on TDD_FIELD.FLD_NAME,
so pressing [Enter] in the COL_FLD_NAME column brings up the TDD_FIELD record with
that value.

The Console has only one active function key, [F3], which quits the Console. The table
applications have two sets of active function keys, one for non-query mode, one for query
mode.
DesignVision Users Guide 34

Chapter 4 Creating Forms Navigation
Non-Query Function Keys

Press ... To ...

[Tab] Move to the next field when entering definitions.

[Enter] Open a foreign key or the parent table from a field.

[F1] Enter query mode.

[F2] Commit changes.

[F3] Quit application.

[F4] Delete current record.

[F5] Insert a new record.

[F6] Append a new record.

[F7] Duplicate the current record.

Up Arrow Scroll up one record.

Down Arrow Scroll down one record.

[PgDn] Scroll down one screen.

[PgUp] Scroll up one screen.

Query Function Keys

Press ... To ...

[Tab] Move to the next field when entering definitions.

[Enter] Open a foreign key or the parent table from a field.

[F1] Execute query.

[F3] Quit application.

[F5] Count number of query hits.

[F8] Open extended query editor.
DesignVision Users Guide 35

Chapter 4 Creating Forms Navigation
Basic Console Activities
Besides creating tables and defining their elements, you can execute the following tasks
from the DVdd Console.

Save Tables
File > Save brings up the save menu options. The console writes an ASCII file of SQL
commands that describe the dictionary’s contents. You can use the file with the
VORTEXsql command utility (see “TRIMrun” on page 13) to reload the dictionary or
move it to another platform or database.

Once you choose a save option, you can specify to save only the CREATE, INSERT or
both statements. Your options are:

Table Selection Saves

All tables All table (DD and user) definitions.

All non-dictionary tables All user definitions.

Current (filtered) tables All tables shown in the Tables list.

Current table Only the currently selected table.

Dictionary tables Only the DD tables.

Refresh or Reload
When you create new table definitions in the dictionary, you need to reload (or refresh
the screen) to see them in the list with Tools > Reload.

Validate the Data Dictionary
Tools > Structure Check validates the entire dictionary. It checks that all foreign
key references are valid and displays a list of any warnings or errors. However, if you
always work on the tables with the dictionary applications, your dictionary should be
error free. Warnings may include the message “unused tables.” Because the structure
checker cannot know when your application uses a table, these messages, like the version
skipped messages, should not alarm you.

Delete Versions
Tools > Delete old versions deletes all old versions stored in the DD tables.

Create Default Entries
Tools > Create default TDD entries for tables reloads the default
Console entries for the dictionary tables.
DesignVision Users Guide 36

Chapter 4 Creating Forms Creating and Managing Database Tables
Mask Database Catalog Differences
Tools > Generate lets you create tables and views that mask database catalog
differences.

Create Header Files
Tools > Generate ‘tdd.h’ file creates a TRIMpl -and C-compatible header file
that contains the definitions stored in TDD_CODE, TDD_DOMAIN, and TDD_FORMAT.

Automatic Documentation
Tools > Generate HTML pages generates HTML pages for the defined tables. You
can specify from the following list:

Table Selection Describes

All tables All table DD table definitions.

All non-dictionary tables All user table definitions.

Current (filtered) tables All tables shown in the Tables list.

Current table Only the currently chosen table.

Dictionary tables Only the DD tables.

Creating and Managing Database Tables
The DVdd maintains your table definitions in the TDD_TABLE and TDD_COLUMN tables.
It also keeps the index definitions for these tables in TDD_INDEX and TDD_XCOLUMN.
The TDD console creates DDL statements to create these tables and indexes when you
File > Save.

Storing and Retrieving Field Definitions
The tutorial begins by showing you how to build the foundation for a new object for
applications — last name field — using the DVdd Console. After storing the information
for the object, you can retrieve it and modify it at any time.

☞ Starting the Console

The console is the main entry point to the dictionary maintenance applications. It has a
tables list, a columns list, and a menu bar. The tables list shows all the tables currently
defined in the dictionary. Columns shows the columns for the currently selected table. To
update the columns list, click on the table name. To bring up that table’s maintenance
application, click a second time.
DesignVision Users Guide 37

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
1. From DesignVision Designer, select File > Dictionary.

☞ Adding a category

Begin by creating two new categories, one each Project and Application Group.

1. Click on TDD_CATEGORY in the tables window of the DVdd Console twice to bring
up the table window.

2. Press [F1] twice to query the database and display the existing CATEGORY values.

3. Records > Insert to add a new item.

4. Define the new category with the following attributes by typing the word in bold in
the field and [TAB]bing to the next field:

• Category Name = TUTORIAL

• Type = Application Group

• Comment = Trifox Tutorial

5. Records > Duplicate.

6. In the duplicated category, change the Type to Project.
DesignVision Users Guide 38

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
Your window should look like this:

7. Edit > Commit (or press [F2]) to commit the change.
File > Quit to close the window.

It does not matter if you add an item at the top of a list or at the end. Data is resorted
after a COMMIT and when you RELOAD, items appear in alphabetical order.

☞ Creating a domain

Now create a domain for last names.

1. Click the TDD_DOMAIN table twice to open the DOMAIN table window.

2. [F1] twice to query the database and display existing domains.

3. Record > Insert a new record with the following attributes:

• Domain name = _TUT_LASTNAME

The “_TUT_” prefix simply makes it easier to see what domains belong to an
application group. If you have domains that span application groups, you may
prefer not to use a prefix.

• Datatype = Character

• Len = 30

4. Your screen should look like this:

5. Edit > Commit.
File > Quit.
DesignVision Users Guide 39

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
☞ Defining the database table

Because the LASTNAME field is a column in a database table, you must define it in the
TDD_TABLE. Referring to the DVdd diagram on page 21, you can see that TDD_TABLE
relies on TDD_HELP, so first you must set up the TDD_HELP.

1. Open TDD_HELP and insert a record with:

• Help name = TUT_TPL_CUST

• Project ID = TUTORIAL

• Lan = ENG

2. If you queried the database first, your screen should look like this:

3. Put the cursor in the Help name field and [Enter].

4. In the Editor window that appears, type the help message as it looks in the example:

5. Click “OK”.

6. Edit > Commit.
File > Quit.

7. Open TDD_TABLE and define the field with:

• Table name = TPL_CUST

• Editor name = Leave Blank

• Description = Tutorial
DesignVision Users Guide 40

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
• Help name = TUT_TPL_CUST

8. Edit > Commit, File > Quit.

☞ Creating the column

1. Open TDD_COLUMN without querying the table first and enter the following
values:

• Column name = TPL_LASTNAME

• Table name = TPL_CUST

• Seq = 0

• Nulls allowed = No

• Domain name = _TUT_LASTNAME

• Field name, Help name = leave empty, as shown in the following:

2. Edit > Commit and close the window.

☞ Creating the create statement

1. File > Save > All non dictionary tables.

2. Specify a filename, if one does not appear and click Both in the dialog box:
DesignVision Users Guide 41

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
3. Using any text editor, look at the file it creates and you see:

#
To execute: vtxsql /c<connect_string> /rmoose.sql
#
#--
TPL_CUST
#---
/xcupdate
drop table TPL_CUST;
/xcupdate
create table TPL_CUST(
 TPL_LASTNAME varchar(30) not null);
#---
/xcommit
/quit

☞ Determining the field’s appearance

After defining the database column and table, you determine how the field appears and
behaves in the application. Now you complete the definitions that you left empty in the
TDD_COLUMN definition and connect the tables.

1. Open the TDD_FORMAT table and create an entry as follows:

• Format name = TUT_LASTNAME

• Project ID = TUTORIAL

• Group ID = TUTORIAL

• Lan = ENG

• Format Mask = A30

The window should look like this:

2. Commit the record and exit. (Edit > Commit, File > Quit.)

3. Open the TDD_EDIT table and create an entry as follows:

• Edit name = TUT_LASTNAME

• len = 15

• Format Name = TUT_LASTNAME
DesignVision Users Guide 42

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
The window should look like this:

4. Commit the record and exit. (Edit > Commit, File > Quit.)

5. Open the TDD_LABEL table and create an entry as follows:

• Label name = TUT_LASTNAME

• Project ID = TUTORIAL

• Group ID = TUTORIAL

• Lan = ENG

• Seq = 0

• Font = Label

• Text = Last name

The window should look like this:

6. Commit the record and exit. (Edit > Commit, File > Quit.)

TDD_SFIELD is the main DVdd table for screen field definitions. It is the first form
that has multi-attributes, which work differently than you may expect. Instead of a
list of checkbox items, you scroll through the list with up and down arrows, and
highlight the selections that you want to use.

Open TDD_SFIELD and create a new entry:

• Screen field = TUT_LASTNAME

• Edit name = TUT_LASTNAME

• Label name = TUT_LASTNAME

To set the Attributes — Database, Not null, and List — Click in the field to highlight the
[PgDn] key to “Not null.” Click in the field to highlight the selection and again, use the
arrow to display “List.” Highlight this attribute, also.
DesignVision Users Guide 43

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
The window should look like this:

7. Commit the record and exit. (Edit > Commit, File > Quit.)

☞ Connecting the tables

To connect TDD_COLUMN, TDD_FIELD, and TDD_SFIELD, edit the TDD_FIELD table
and create a new entry:

1. Open TDD_FIELD, Records > Insert and type:

• Field name = TUT_LASTNAME

• Screen field name = TUT_LASTNAME

The window should look like this:

2. Commit the record and exit. (Edit > Commit, File > Quit.)

3. Open the TDD_COLUMN table.

4. Records > Query (or press [F1]).

5. Type TPL_LASTNAME in the Column name, and press [F1].

6. Tab to the Field name column, enter TUT_LASTNAME.

7. Commit.

You now have the TUT_LASTNAME field defined throughout the DVdd.

You can make other entries. For example, you accepted the default data validations by
leaving the Validation Trigger field empty in TDD_SFIELD record for this field. You can
see the SQL for your entries by choosing File > Save > All tables and looking in
the created file for TUT_LASTNAME.
DesignVision Users Guide 44

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
☞ Completing tutorial data dictionary

Now that you have the TPL_LASTNAME field defined, you can use VORTEXsql to insert
the rest of the tutorial data dictionary, which is called tutorial.sql.

This tutorial creates tables named TPL_CUST, TPL_ORDERS, TPL_PAYMT, TPL_PROD,
and TPL_SHIPSUM. If you have any tables with those names, you must rename them or
the tutorial tables will overwrite them. You may see some warning messages about tables
that do not exist. This is normal for the first time you run the tutorial DD creation file
because the tutorial tables do not exist yet.

Run the utility by replacing the italicized keywords with the correct value;

 vtxsql /cyour_connection /rtutorial.sql

Remember that VORTEXsql commands are designated by a forward slash and then a
letter. The command’s parameter follows immediately without any spaces.

 For a complete list of all the VORTEXsql options, refer to page 13.

☞ Creating fields with the data dictionary

Now it’s time to see how DVapp uses the DD to create fields. Start DVapp, connect using
your userid and password and open the tutorial design file.

1. File > Open and select tutorial.gap.

2. Click on SHIP_INFO in the Window Map.

The window details appear in the Window Painter.
DesignVision Users Guide 45

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
3. Alt-click your cursor about 10 characters beyond the end of the First Name field.

4. In the floating menu that appears, Create > Field.

5. In the Choose Field dialog, choose Table as the Type if it is not already selected and
click [Refresh]. Scroll down the list until you see TPL_LASTNAME.

6. Click TPL_LASTNAME. The Define Field dialog appears with all the information you
entered in the DD.

7. Choose OK and the field is now part of the SHIP_INFO window.
DesignVision Users Guide 46

Chapter 4 Creating Forms Storing and Retrieving Field Definitions
This exercise is a simple example; however, it shows how the DD manages the important
aspects of field definition. All applications that use the TPL_LASTNAME field look and
act the same. If you decide to change size of the field, you simply change it in the DD
and reload your applications.
DesignVision Users Guide 47

DesignVision Users Guide

Chapter 5

Writing in TRIMpl

TRIMpl is a 4th generation language (4GL) based on the industry standard programming
language C. Like with C, you can examine the code with any text editor, like vi or emacs,
or even Notepad, and make your changes to the program files before they are compiled.

Triggers contain one or more TRIMpl statements. The trigger syntax is a subset of C with
a few additions incorporated to facilitate operations required for the applications:

• New datatypes.

• Built-in functions.

• Control flow operators.

Object Relationships
DVapp relates windows in applications to build complete applications. The relationships
can take one of two forms:

• Sibling — illustrated in left-right pairings. Sibling report blocks and windows all
have the same single parent.

• Parent-child — illustrated in top-bottom layout structures.

While windows are being designed, only the blocks with direct parent-child relationships
appear — the Designer never displays siblings on the same screen.

At runtime, windows are organized top-down and left-right. You can modify the
window sequence using the window() function, as described in the TRIMpl Function
Reference.
DesignVision Users Guide 48

Chapter 5 Writing in TRIMpl Object Relationships
Execution Flow
Triggers control the execution flow of an application. Windows in an application range
from simple status windows to complex navigation control, data display, and data
update windows. The more complex the form, the more complex the trigger code.

The typical control flow in a window is:

Call
Initialization Trigger

Open
Window

Execute
Window Trigger

Wait for
Input

Execute Specified
Trigger

Execute
Query/Update Trigger

Close
Window

Typical flow of control begins with calling the Initializing Trigger and ends with Closing the
Window.

The window() TRIMpl function executes initialization, window, query, and update
triggers. [raw_]input() is usually responsible for calling key triggers when the end
user strikes the key. You can also call them directly using exec_key(). You may want
to do this if you have both a menu item and a key that perform the same action. The
menu item could call the key trigger directly, thereby simplifying application design and
maintenance.

NOTE: While you can call triggers recursively, all variables not explicitely defined as local are
static so exercise caution!

For more details about triggers, code modules that contain one or more TRIMpl
statements, and how write and use them, read “Trigger Operations” on page 66.
DesignVision Users Guide 49

Chapter 5 Writing in TRIMpl Variables
Changing Objects’ Status
Each menu item and button has an 8-bit flag that keeps track of the object’s state.
Typically, when a user selects a button or menu item, the selection invokes the
appropriate trigger. However, functions that work with radio buttons and checkboxes
need to check the object’s state to know what action to take.

DesignVision has seven preset flags that are defined in the header file trim.h for
character-based applications and dv.h for Windows applications:

File Symbol Value Description

trim.h flg_active 1 Field active (echos to screen).

flg_modified 2 Field’s variable modified.

flg_input 4 Input has been performed from field.

flg_output 8 Output has been performed on field.

dv.h flag_out 4 Field modified for output. Must be set when
setting 16, 32, or 64.

flag_in 8 Field modified by user input.

flag_disable 16 Item is disabled.

flag_return 32 Return this action (when you want radio button
or checkbox action).

flag_tagged 64 Item is tagged (radio button/checkbox is on).

Variables
You can put a predefined or user variable in a report or window text and give it a value
at runtime. In text the variable is preceded by an ampersand (&). For example, in a report
page footer, a line of text can include the current date and page number:

Report generated on &G.TIME Page &G.PAGENO

Inline
You can insert actual code into text by placing an ampersand (&) followed by the code
enclosed in delimiters. The delimited code can be a single statement or multiple
statements. The delimiter can be any character. The following example uses a forward
slash (/).

If a single statement returns a value the value is inserted in the text; otherwise, the code is
replaced by a zero (0) length string:

&/to_char(CODE, "0999")/

Without the formatting the value is placed in a default format. In this example, the code
does not have a terminating semicolon (;) so the inline function must return a value. If the
line is terminated with a semicolon, the code returns a void value that results in a zero-
length string substitution.
DesignVision Users Guide 50

Chapter 5 Writing in TRIMpl Triggers and Functions
Triggers and Functions
A trigger is a special module of TRIMpl code that is used to control an application’s
behavior, including:

• Alter default execution flow.

• Send control codes to the output device(s).

• Create and manipulate user variables.

DVapp has two types of triggers each with its own area of influence:

• Field — Local to field, accessed in designer with alternate button (typically the
left mouse button for most right-handed users).

• User — Local to the window, selected from pulldown menu.

If a trigger contains multiple statements, you must enclose each block of statements in
braces ({ }).

Triggers are considered window elements for the purposes of designing applications and
reports. However, they are logical, not visual. Triggers are the elements that contain the
instructions for each action in an application or report generation. Triggers can either be
local to the field, and accessed in the Designer with the alternate mouse button, or local to
the entire application. These triggers, called user triggers are available from the pulldown
menu in the designer.

User-Defined Functions and Triggers
You can define functions interactively using the DVapp (or TRIMreport) Editor and the
USERTRIG action.

If your user-defined triggers need to be available to other applications or reports,
however, you must write and save them in the dv.fnc file.

You can execute a block of code that has been assigned to a trigger variable at any time.
Especially when parameters are passed to the trigger, assigned blocks behave like
function calls.

Stand-alone
TRIMpl stand-alone code, a complete report or application design, can behave as a
function. In general, using stand-alone code as a function is not good practice because of
the overhead of reading in another file. Arguments can be passed to a run file within the
call() function. For example:

call(‘‘mytest.run’’,‘‘arg1’’,‘‘arg2’’);

mytest.run can reference each of the passed arguments as parm[0] through parm[n]
in the main trigger if the file is an application or report design, or stand alone design.
Whatever the called function returns (up to 400 bytes, unless it is returned in a list) is
passed back by the call() function.
DesignVision Users Guide 51

Chapter 5 Writing in TRIMpl TRIMpl Language Syntax
Field Triggers
Field triggers do not have any parameters passed in. However, the active field is restored
at exit from a field trigger. This means that if the field trigger modifies the active field,
either using a window-name.AF variable or the active_field() function, on exit, the
original value is restored.

Validation Triggers
Field validation triggers automatically receive two parameters: the character string
representation of the value in the field and the format mask for the field. These
parameters are referenced as parm[0] and parm[1].

Calling Conventions and Return Values
You can reference values passed in parameters as parm[0] through parm[n] where the
parameter variable’s datatype is inherited from the argument. Because an argument is
passed by value, not reference, a structure such as an array cannot be passed, although a
list can.

You can pass an unlimited number of arguments to a function and read the number with
the count(parm) function. Errors occur if you refer to a parm[n] that has not been
passed results in a runtime error or if a function returns a value and no variable receives.

You can also pass the original function parameters to another function without having to
explicitely enumerate them by using the parm() function. The parm() function takes up to
two optional parameters, a starting zero-based index and a count. parm() without
parameters places all of the incoming parameters into the called function’s parameter list.
parm(m) places the parameters beginning with index m and parm(m,n) places the
parameters beginning with index m and for count n. For example, function/trigger
oldfnc is called as oldfnc(1,’There”,56):

newfnc(“hello”,parm()); /* newfnc(“hello”,1,”There”,56) */
newfnc(parm(2,1),parm(0,2)); /* newfnc(56,1,”There”) */
newfnc(parm(),parm()); /* newfnc(1,”There”,56,1,”There”,56) */

NOTE: The return() keyword is not allowed in certain code blocks, such as windows or field
triggers.

TRIMpl Language Syntax
TRIMpl has a number of similarities to the C language:

• A pre-processor phase that lets you replace variables and keywords with other
strings. It processes the trim.h/dv.h first and handles triggers in the order
they appear.

• The flexibility to put the commands anywhere in the TRIMpl code.

• Both /* */ and // style comments are supported.

• Requirement that code declarations are enclosed in braces ({ }). While C allows a
set of braces to contain no code, TRIMpl expects at least a semicolon (;). For
example, C allows
DesignVision Users Guide 52

Chapter 5 Writing in TRIMpl TRIMpl Language Syntax
main()
{
}

While TRIMpl requires

{
;
}

However, the TRIMpl code example has no function declaration; in this example, the
name of the file is used for the name of the function or stand-alone program.

TRIMpl supports the following commands (which always begin with a #):

Command Use

#include Specify the file name without ‘ ‘‘..’’ ’ or ‘<..>’. If you do
not specify the search path in trim/dv.ini or with the
include_path parameter, the preprocessor only
searches the current working directory. For example:
#include std.trg
(“Naming Conventions” on page 55 for more
information about trim/dv.ini settings.)

#define, #undef TRIMpl supports both simple defines such as

#define mydef 1

 and macros. The definition as well as the invocation of
the macro must be on a single line. For example,

#define hello(A,B) printf(A^^” and “^^B)

Specifying TRIMgen -u automatically creates
 #define GUI "1"

Specifying TRIMgen -g automatically creates
#define DEBUG “1”

#if[n]def, #else, #endif If you are running in window display mode, the
following example places the application name in the
window title.

#ifdef GUI
window_name(design_name());
#end

#trigger [name] Specify a trigger within a standalone trigger. The trigger
becomes a function ‘name’ that can be called from within
the standalone trigger. The standalone trigger must be
delineated by #trigger with no name.
DesignVision Users Guide 53

Chapter 5 Writing in TRIMpl TRIMpl Language Syntax
TRIMpl does not support certain standard C functions and control operators. If it
encounters the unsupported constructs, TRIMpl returns syntax errors.

The following constructs are not currently available in TRIMpl; however, stand-alone
functions to address these needs are relatively simple to develop.

• do … while()

• Pre-increment/decrement

• Auto-operators

• Bit shifting
DesignVision Users Guide 54

Chapter 5 Writing in TRIMpl Syntax Extensions
Naming Conventions
Functions, blocks, windows, and variables have identifiers, names that you use in an
application to specify one of the items. Block names, or block identifiers are specific to
code blocks, so that you can reference them outside of the function to which they belong.

Like SQL, TRIMpl treats all identifiers as uppercase text by default. By convention, data
types, built-in functions, and other keywords are all lowercase. You can change the case
by altering the uppercase and uppercase_sql options in trim/dv.ini.

All identifiers have the following format:

[window-name | block-name].identname}

If you don’t specify a block name, TRIMpl assumes the current window or block name.

The reserved blockname G represents:

• Predefined variables.

• User variables defined in the main trigger.

• Variables in the global window trigger in DVapp.

Syntax Extensions
TRIMpl has extensions to the standard C syntax that simplify certain database and
application operations:

Concatenate
The double caret (^^) concatenates two strings.

field = "Salary in dollars is " ^^ sal;

field
Indicates the area on the application window or report page where the attributes from
the DEFINE FIELD dialog in DVapp should be placed.

field = salary * 1.1;
causes

salary * 1.1

to appear on the page or screen as specified by the field definition.

This keyword (in lowercase text) indicates the actual character area on the application
window that corresponds to the definition in the Define Field dialog in DVapp.

field_d
Usually field_d and field go hand in hand; that is, if a value is written to field,
then field_d always contains the character version of that value. On the other hand, if a
character value is written to field_d, then field is not modified.

synonyms
PARENT or P. In a DVapp window trigger, P or PARENT refers to the Global window. In
the key, update, validate, and field triggers, P or PARENT refers to the current window.
DesignVision Users Guide 55

Chapter 5 Writing in TRIMpl Syntax Extensions
parm.n and parm[n]
To reference a parameter in a user trigger or function, TRIMpl automatically numbers
parameters by using either the variable parm.n or parm[n], where n is zero-based.
(TRIMpl automatically uses the style with square brackets and we recommend that you
follow this convention.) Since users know neither the number nor the type of parameter
until runtime, this convention allows dynamic type conversions when you need them.

When you pass parameters to TRIMrun with the -p option or pass them through the call
function, they are accessible in the main triggers as parm.n or parm[n]. Because only
one parameter area is available, parameters must be stored in local variables before make
other function calls.

Use count(parm) to get the number of parameters at runtime.

IN predicate
The IN predicate, identical to the IN predicate in SQL, appears in conditional statements.
It is functionally equivalent to a series of OR clauses in an if statement.

LIKE predicate
The LIKE predicate, used in conditional statements, is identical to the LIKE predicate in
SQL. Two special characters are used as wildcard characters: “_” — any single character
and “%’’ — zero or more of any character.

@
Putting an “at sign” (@) in front of a field variable with a list attribute causes the variable
to be replaced at runtime by a constant integer that represents the field’s list column
number.

For example,

printf(list_curr(p.wl,@p.salary));

prints the column corresponding to the field salary from the current item in the
window list.

export/import
Use these keywords to make variables accessible across applications without having to
pass them as parameters or return them as return values.

This example, which can be added anywhere in the code, exports a variable VAR:

export VAR;

Any application that needs to access VAR must add the following

import VAR as MYVAR;

From then on MYVAR can be used like any other variable.

local
The local keyword defines the variable as local to this invocation of the trigger. Local
variables can only be defined in user triggers. Local variables are useful in writing
DesignVision Users Guide 56

Chapter 5 Writing in TRIMpl Syntax Extensions
recursive functions and if they are defined with an initialization value, they will be
initialized on every entry to the trigger.

For example,

local int VAR;
local int VAR = 42;

Local variables are stored in a special variable stack. The stack size is controlled by the
stack_size keyword in the dv.ini/trim.ini file; the default size is 8000 bytes. A
runtime error will be thrown if the variable stack space is exceeded.

master
The master keyword defines the variable as the master variable instance for all variables
of the same name. Any assignment to this variable will propogate to all other variables in
the application with the same name. This can be used to initialize variables in multiple
windows with one assignment. For example,

#trigger one
{int VAR; printf(“one”); if (VAR) printf(VAR);}
#trigger two
{int VAR; printf(“two”); if (!VAR) printf(VAR);}
#trigger
{
master int VAR;
one(); two();
VAR = 42;
one(); two();
}

This will display

one
two
0
one
42
two

Groups
TRIM/PL has the concept of groups of variables or expressions. It enhances the
assignment and return statements. There are two ways to use groups. The first is in
simple assignments. For example,

 [var1,var2, ... ,varN] = [expr1,expr2, ... ,exprN];
DesignVision Users Guide 57

Chapter 5 Writing in TRIMpl Filename Specifications
Notice the “[]” brackets around the variables and expressions. These identify the group
members. This syntax is equivalent to

var1 = expr1;
var2 = expr2;
...
varN = exprN;

 If there are more expressions than variables the additional expressions are ignored. If
there are more variables than expressions then the last expression is repeated for the
additional variables. For example,

 [a,b,c] = [88];

 results in all three variables being set to 88.

The second use of groups is with return() statements. For example,

[var1,var2, ... ,varN] = X();

 where X() does a return([expr1,expr2, ... ,exprN]);. The same assignment rules described
above apply. X can be a trigger(), execute(), or call().

Filename Specifications
Each of the functions that operate on files needs a specification to identify the correct file
(or URL). The functions are:

• append()

• delete()

• dump_scr()

• file_copy()

• list_file()

• list_open()

• log()

• open()

You can specify a “filename” as:

• Local (current working directory) — specified simply with the filename.

• Display — gui!filename

• Database — vortex!filename

• Internet — net!type:url (read only)

• Directory — dir!options pathname (read only)
DesignVision Users Guide 58

Chapter 5 Writing in TRIMpl Filename Specifications
Local
The following example instructs the program to open a file on the same machine as the
application server in the current working directory for a file called myfile.txt.

ll = list_open("myfile.txt",100);

To open a file on the same machine, but different directory, simply specify the full
directory path.

Display
In some cases you want to open or modify a file on the machine that is displaying the
application, which can be running either fat (where the server machine is already acting
as “display”) or thin client. In the situation where the file is on the display machine, you
prefix the filename with the specifier gui!:

ll = list_open("gui!myfile.txt",100);

If the filename contains wildcard characters, then the Display’s File Open/Save dialog
will open:

ll = list_open(“gui!\tmp*.lst”,100);

gui! has five subspecifiers:

• Clipboard — to read or write to the display client’s clipboard, specify
“gui!clipboard:”.

• Dir -- to bring up a Windows file dialog box. The returned list has the name of
the chosen file.

• Edit — to start up an editor on the display client to edit the list, use
“gui!edit:editor” where editor is the name of an editor program on the
client that accepts a filename on the command line. For example,

list_file(ll,”gui!edit:notepad”,”a”);
ll = list_open(“gui!edit:notepad”,100000)

sends the contents of the ll list to the notepad editor and then reads it back again
when notepad exits.

• Image — to add images to the display client that can then be displayed on the
screen, use “gui!image:imagename.type” Imagename specifies the name of
the image and type specifies the type of image (.gif, .bmp, or .jpg) to display. (For
more information about displaying images, see “Graphic Lists” on page 82.)

• Peer — not applicable to file I/O and not discussed here.

Database
If the file to manipulate is located on a machine other than the local, or display, machine
use vortex! to specify the file, which can be located where a VORTEXserver database
DesignVision Users Guide 59

Chapter 5 Writing in TRIMpl Filename Specifications
connection has been made or simply where the VORTEXserver file copy program runs.
In this example, list_open() uses the Oracle database connection to fetch the file
located on the machine specified as dbmachine.

{
connect(0,"net:scott/tiger@dbmachine!VTX0");
ll = list_open("vortex!myfile.txt",100);
.
.
.
}

Retrieving a file from the machine that runs the VORTEXserver file copy program might
look like this:

{
connect(0,"net:whatever@filemachine!vtx99");
ll = list_open("vortex!myfile.txt",100);
.
.
.
}

Again, you can specify as much directory path information as necessary to find the file.

Internet
To access files through HTTP or FTP, you use the net! prefix and specify type as either
http or ftp. Note that you can’t update any files with this prefix. It is read only. The
following example accesses the file “myfile.txt” located on an FTP server:

 ll = list_open("net!ftp://ftp.trifox.com/pub/outgoing/myfile.txt",100);

You can also access HTTP servers with

ll = list_open("net!http://www.trifox.com/myfile.txt",100);

Directory
The read-only directory specification lets you specify a directory and filename mask and
get all the qualifying entries. Use the syntax

dir![-rfd] pathname

where

r scans directories recursively. Used alone it assumes rf.

f returns only filenames (default, if you don’t specify another option)

d returns only directory names.

When you specify any option, be sure to put a blank space before pathname.

The following example returns all files with an .a extension that are located in the
directory /usr or any of its subdirectories.
DesignVision Users Guide 60

Chapter 5 Writing in TRIMpl SQL Syntax Translation
LL = list_open(“dir!-rf /usr/*.a”,1000);

SQL Syntax Translation
While all SQL database vendors support ANSI-92 SQL syntax, many have additional
functions to support their tools. These additions present a problem if you want to build
truly database-independent applications. You perform SQL translations with
sql_xlate() runtime.

For example, Oracle supports a DECODE function whereas DB2 has a CASE statement.
The following specification in a function mapping file enables the function
sql_xlate() to translate the Oracle function to run correctly with a DB2 database.

DECODE CASE WHEN $0=$1 THEN $2 #2[WHEN $0=$3 THEN $4]ELSE ~0 END

If you want to use dynamic translation, the function mapping file must be available to the
runtime application.

Create a file
and list translations
from original syntax to target
database syntax.

Specify the filename
in trim/dv.ini.

For runtime translations
use sql_xlate()
function with the
database id from

1

2

3

trim/dv.h.

db2.fms

trim/dv.ini

Application
Code

LTRIM STRIP($0,L)^1

RTRIM STRIP($0)^1

TO_CHAR CHAR($0)^1

TO_DATE DATE($0)^1

LTRIM STRIP($0,L)^1
RTRIM STRIP($0)^1
TO_CHAR CHAR($0)^1

sql_xlate_file db2.fms

db_cursur_cache no

db_cursors 15

db_trim_blanks yes

LTRIM STRIP($0,L)^1

include_path c:\trim\inc

message_file mymessage

uppercase yes

sql_xlate_file db2.fms

{
…

db2sql=sql_xlate

…
}

 (“select decode
 (id,42,16,23)
 from staff”);

db2sql=sql_xlate
 (“select decode
 (id,42,16,23)
 from staff”);

Using sql_xlate() requires several steps, including creating the function mapping file.

The function mapping file contains lines of paired of functions, like the one above, and
comments, which are marked with a “#” at the beginning of the line. The first part of the
function mapping definition is the name of the function to replace (or map). The second
part, separated by one or more blanks from the first part, is the string to use instead.
DesignVision Users Guide 61

Chapter 5 Writing in TRIMpl SQL Syntax Translation
This mapping string can contain certain control characters that reference the parameters
from the function. If any of the control characters are necessary in the actual output, you
must escape them with a '\'.

Control Character Definition

* All parameters. The parameters in the function are simply copied
as they appear including the commas (',').

$n Parameter n where 0 is the first parameter.

~n Parameter n from the end where 0 is the last parameter.

?n[s] Optional parameter n. If parameter n is given, then s is
processed.

#r[s] Repeat for the next r parameters. For each set of parameters
found in s, r is added to n. s is repeated as long as there are at
least r parameters left in the parameter sequence.

^n Error out if parameter n is found.

Here is an example for mapping Oracle to DB2:

DECODE CASE WHEN $0=$1 THEN $2 #2[WHEN $0=$3 THEN $4]ELSE ~0 END
SUBSTR SUBSTR($0,$1?2[,$2])
LTRIM STRIP($0,L)^1
RTRIM STRIP($0)^1
TO_CHAR CHAR($0)^1
TO_DATE DATE($0)^1
NVL CASE WHEN $0 IS NULL THEN $1 ELSE $0 END
MAX MAX(*)
MIN MIN(*)
AVG AVG(*)
SUM SUM(*)
COUNT COUNT(*)
DesignVision Users Guide 62

DesignVision Users Guide

Chapter 6

Variables and Triggers

Trigger Types
The TRIMpl code contained in the window’s triggers controls application window
behavior. Triggers are not visual elements, but logical ones. They contain the instructions
for each visual element. Triggers can have user-initated actions:

• Action — Controls action button behavior.

• Key — Controls action when key is pressed.

• Menu — Creates a list of items with associated items.

• Predefined — Determines pre-defined window events, such as focus change.

Or they can be controlled by the TRIMpl code:

• Initialization — Initializes the window.

• Query — Manages database queries.

• Radio button — Controls radio button behavior.

• Update — Manages database updates, inserts, and deletes.

• Window — Controls the overall window behavior.

Windows Event Triggers
TRIMpl includes 16 pre-defined event triggers (their definitions are in the file dv.pev).

G.AUX is a predefined integer variable that is used to return values from certain events.
(See “Predefined Variables” on page 67 for a complete list.)

Event name Action taken

Single click right mouse button User clicked right mouse button.

Single click left mouse button User clicked left mouse button.

Double click right mouse button User double-clicked right mouse button.

Double click left mouse button User double clicked left mouse button.

Focus change User clicked in different field.

Window A window event occurred. AID contains the
window number where the event occured and
AUX contains the sub-event. There are currently
two sub-events defined in dv.h:
 wev_expand
 wev_collapse
DesignVision Users Guide 63

Chapter 6 Variables and Triggers Variable Names
Variable Names
All variable identifiers must begin with an alphabetic character between the values of A
through Z and be no more than 30 characters long. Variables are case-insensitive and are
converted, by TRIMpl, into all uppercase unless the trim/dv.ini uppercase option
is set to false. (“Naming Conventions” on page 55 for more information.)

After the first alphabetic character, a variable identifier can include alphabetic characters,
digits (0-9), and/or an underscore (_), pound sign (#), or dollar sign ($).

The following are examples of valid names for variables:

int A00001;
trigger A$$$$$;
list B_$$01;
char foo_zz$#[50];
char(50) foo_zz$#;

TRIMpl has a number of variable datatypes to meet individual user needs. However, it
does not allow for structure declarations or for arrays exceeding two-dimensions. To
implement these features, TRIMpl uses lists. All variables must be declared before an
expression in a block of code.

When a design is compiled, all of the variables in the design are allocated memory and
made globally available, unless declared with the local keyword, given their unique
extension and variable/field name. If the trim/dv.ini option uppercase is not
specified, TRIMpl ignores case; otherwise, it is case-sensitive if uppercase is set to
false. Also, the variables are initialized to NULL unless explicitely initialized.

Scope
For local scope, you do not need to fully qualify the variable name. A variable’s value is
preserved across invocation of triggers. You can access block or window variables from

IPC event occurred An IPC message was received.

Window resize A window resize message was received.

Communication event notification A window communication event was received.

Close event notification A window close message was received.

Window change User switched to a different window

Popup menu User picked a popup menu item (g.aux is the
index.

Client killed The client was closed by a user action.

Forwarded actions A child window forwarded an action (G.aux is
the index.)

WM_USER + 998 message received G.aux contains wParam.

Timer input_timer popped.

Event name Action taken
DesignVision Users Guide 64

Chapter 6 Variables and Triggers Variable Names
anywhere if you provide a fully-qualified name (the locally declared name with
appropriate prefix). TRIMgen automatically adds a prefix to a variable as explained
below.

DVapp Trigger Types

In DVapp, variables declared in the main trigger are assigned to the Global window.
Declaring a variable called trig01 in both the main trigger and in the Global window
trigger generates a syntax error.

Similarly, a variable space overlap exists between a field’s main trigger and its validation
trigger. The field TPL_ZIP cannot have a variable called var01 in both its field and
validation trigger. In addition, even though variables that overlap can reference each
other as local variables without having to fully qualify the reference, full qualification is a
wiser choice.

Trigger Variable Description Example Note

Key w.K.n.v w - current
window
name

n - key number
v - variable name

W1.K.0.len You can only reference
these variables from
inside the key trigger.

Update w.U.U.v w - current
window
name

v - variable name

W1.U.U.cnt You can only reference
these variables from
inside the update trigger.

Window w.v w - current
window
name

v - variable name

W1.mode

Field &
Validation

w.f.v w - current
window
name

f - current field
name

v - variable name

W1.id.i You can only reference
these variables from
inside the field and field
validation trigger.

User u.F.F.v u - user trigger
name

v - variable name

upper.F.F.i These variables can only
be referenced from in the
user trigger.
DesignVision Users Guide 65

Chapter 6 Variables and Triggers Trigger Operations
DVreport Trigger Types

Trigger Variable Description Example Note

All b.v b - current bock
name

v - variable name

B1.count

User uF.F.v u - user trigger
name

v -variable name

wait.F.F.j These variables can only be
referenced from inside the
user trigger.

Stand-Alone Trigger Types

Trigger Variable Description Example Note

All b.v b - current bock
name

v - variable name

G.len

User uF.F.v u - user trigger
name

v -variable name

days.F.F.cnt These variables can only
be referenced from inside
the user trigger.

Trigger Operations
Trigger variables are defined as offsets into a code execution block. The only operations
allowed are assignments and executions.

Examples
/*
** Dynamic trigger assignment
*/
{
trigger oper;
char resp[1];
numeric arg1,arg2,result;

arg1 = prompt("Type in 1st argument->");
arg2 = prompt("Type in 2nd argument->");
resp = prompt(Type in function code (A = add, S = sub) ==> ");

if (resp == "A") oper = { return(parm.0 + parm.1); };
else oper = { return(parm.0 - parm.1); };

result = execute(oper,arg1,arg2);

printf("Result of operation is " ^^ result);
}

DesignVision Users Guide 66

Chapter 6 Variables and Triggers Predefined Variables
Predefined Variables
TRIMpl provides 16 global predefined variables.

Variable Represents

G.PAGELENGTH Length of report page.

G.PAGEWIDTH Width of the report page.

G.PAGHEADERLINES Current number of page header lines.

G.PAGEFOOTERLINES Current number of page footer lines.

G.LINENUMBER Current line number.

G.PAGEOFFSET Column offset within page.

G.PAGENUMBER Current page number.

G.SCREENROWS Screen height in number of rows and lines.

G.SCREENCOLS Screen width in number of columns and characters.

G.INPUT_DONE Forces field re-entry when set to zero.

G.KEY Value of last key pressed.

G.ERROR_CODE Last error encountered.

G.TIME Starting time of execution.

G.MODIFIED Returns true when field has been changed.

G.INPUT_DATA Returns true when anything has been entered in field.

G.AID Set to a value (from the data dictionary) after a
[raw_]input() call. If the value is -1, the variable is set
to G.KEY. On a FORWARD EVENT with the value -1,
G.AID is set to G.AUX.

G.AUX Auxiliary variable.

Do not set any predefined variable to NULL. The results are unpredictable.

All predefined variables are int except G.TIME which is datetime and G.MSG which is a
string.

Predefined variables, which are used internally by TRIMrun, are available to you for
modification; however, be conservative, unexpected results can occur because of
incorrectly redefined variables.

NOTE: Not all of the predefined variables are used for both applications and reports, as the names
indicate.
DesignVision Users Guide 67

Chapter 6 Variables and Triggers Predefined Variables
Example
This example changes the predefined variables to create a multi-column report.

The default paginate trigger contains a single statement:

paginate(footer|break|header);

Change the paginate trigger to produce a two-column report:

if (G.PAGEOFFSET == 0) {/* 1st pass thru the page ? */
G.PAGEOFFSET = G.PAGEOFFSET + 40; /* shift by 40 columns */
G.LINENUMBER = G.PAGEHEADERLINES; /* reset line number count */
}

else { /* 2nd pass thru the page */
G.PAGEOFFSET = 0; /* reset back to column 0 */
paginate(footer|break|header); /* do the actual page break */

DVapp Predefined Window Variables
DVapp automatically allocates the following predefined variables for each defined
window.

• window-name.WL — Window list.

• window-name.AF — Active field in window.

• window-name.AR — Active row in a window.

In addition, each field in a window has two implicitly defined variables:

• field — Data (in correct type).

• field_d — Character string representation of data.

TRIMreport Predefined Block Variables
The TRIMreport predefined variables are automatically allocated for each report block
that has a SELECT statement defined. In addition, each column in the SELECT list has an
implicitly defined variable.

• block.CURRENT — Sequential number of current fetch.

• block.EOS — End-of-scan flag.

Miscellaneous Predefined Variables/Symbols
NULL — Equal to nonexistent value.

SYSDATE — Current date and time value.

field — Currently active field.

field_d — Currently active field’s raw data.
DesignVision Users Guide 68

Chapter 6 Variables and Triggers Designer Field Variables
Variable Array Declarations
TRIMpl allows for variable array declarations. An array defined for n elements has
elements var0 through var(n-1). For example:

{
int i, x[2];
numeric n[4];
datetime d[3];
trigger t[3];
list z[5];
char s[2][10]; /* array of 2 strings of max length 10 chars */

x[0] = 1;
x[1] = 5;
n[2] = 1.5;
d[1] = "05-MAR-89";
s[0] = "Hello";
s[1] = "World";

for (i=0;i<2;i++) printf(s[i]);
}

NOTE: Only char/string variables are multidimensional (although a list containing lists is a
multidimensional construct). If a program exceeds the bounds of an array, a runtime
error is generated and program execution stops.

Designer Field Variables
Although TRIMpl supports six variable datatypes, only three are supported for window
or report fields:

• char

• datetime

• numeric

In DVapp, a field defined in the window is a variable. For example, if an application has
a window field called balance that is defined as a numeric, then the window trigger can
reference the field as though it were any other variable.

If the window has n rows, then each row of a field in the window can be referenced as
fieldname[0] through fieldname[n-1]. For example, the third row of the balance
variable can be referenced as balance[2] the first row as balance[0] or balance.
DesignVision Users Guide 69

Chapter 6 Variables and Triggers Designer Field Variables
Conversion
Data is converted at runtime to the appropriate datatype, if discrepancies appear to exist.
For example, in the statement total = sal + x;, if sal is numeric and x is char, x is
converted to numeric if it contains a valid number (for instance, 23.2).

Variables are automatically converted to an appropriate datatype in all cases except int.
Automatically converting to int can lose data, you must use the to_int() function
when converting any other datatype to int.

Trigger and list variables cannot be converted to other types because no other datatype
makes sense.

The table below summarizes the results of straight assignments between data types.

 to
from

int char numeric datetime

int x String of digits Number Converts number of
days since
01/01/0000

char Using to_int(),
converts digits until
non-digit char

x Converts digits until
non-digit char.
Accepts “.”

Default format: DD-
MON-YY

numeric Requires to_int() String of digits x Number of days since
01/01/0000 and hours,
minutes, seconds of
fractional days

datetime number of days
since 01/01/0000

Default format:
DD-MON-YY

Number of days since
01/01/0000 and
fraction of day.

x

Without the formatting, the value is placed in a default format. In the example above, the
code does not have a terminating semicolon (;) and so the inline function must return a
value. If there is a semicolon, the code returns a void value that results in zero-length
string substitution.
DesignVision Users Guide 70

DesignVision Users Guide

Chapter 7

Datatypes

TRIMpl offers eight (char and string are considered the same datatype) datatypes for
variables:

Type Description Initial Value Code

char/string Alphanumeric string NULL 1

datetime Internal date/time NULL 12

int Integer 0 (zero) 0

glob Large object char/binary NULL 17

list Dynamic multi-dimensional structure NULL 16

numeric Fixed or floating point 0 (zero) 2

rowid Binary NULL 98

trigger Block of code NULL 32

TRIMpl also supports arrays of any of these datatypes.

char/string
TRIMpl treats character variables as strings of characters. char and string keywords are
interchangeable. The string size is the length of the longest string that can be
accommodated by the variable. You cannot directly address individual characters in a
string; instead, you must use string functions.

{
char x[10],y[10];
x = "Hello, X";
y = x;
printf(y);
}

DesignVision Users Guide 71

Chapter 7 Datatypes glob
datetime
The datetime variable holds year, month, day, and time data. For example:

{
datetime x,y;
x = "10-JUL-90";
y = x;
printf(y);
x = to_date("10-JUL-90 12:43","DD-MON-YY HH:MI");
}

glob
The glob variable holds character or binary data up to 2^^31-1 bytes. It can be loaded
from a database or clipboard and used to insert lob data into a database. For example:

{
glob glb;
list ll;
char buf[10];
db_command(db_cmd_desc_lobs,"YES");
ll = list_open("select col_int, col_clob from test",100);
glb = list_curr(ll,1);
if (glob_util(glob_char,blobfile)) buf = "Clob";
 else buf = "Blob";
printf("Type/len: "^^buf^^"/"^^glob_util(glob_size,glb));
exec_sql("insert into newtest(col_int,col_clob)
 values(:1,:2)",42,glb);
}

Note that the db_command() must direct the database to return lob descriptors. The
default is char/binary limited to 65k.

int
TRIMpl’s int behaves the same as C’s except that it accepts NULLs. The variable’s byte
size is machine-dependent. To define an int, you can declare:

{
int x = 1;
int y;
y = x;
printf(y);
}

list
The list variable is a dynamic mxn matrix of data. Each cell of the matrix can contain any
variable datatype including other lists. You manipulate columns in each row with
(list_*()) functions. For example:

{
list lvar;
DesignVision Users Guide 72

Chapter 7 Datatypes numeric
lvar = list_open("1 1",5); /* 2 columns */
list_mod(lvar,0,"Hello","World");
printf(list_curr(lvar,0),list_curr(lvar,1));
}

numeric
The numeric variable declares a floating point datatype. The variable uses 22 bytes and
has a precision of 38 digits with a maximum exponent of +125. To define a numeric, you
can say:

{
numeric x,y;
x = 1.25678;
y = x;
printf(y);
}

rowid
rowid’s datatype is opaque, its contents depend on the database you query. You can
move character data into and out of a rowid variable. However, use caution; if you
change the value of rowid, it no longer references the same database row.

This example shows how to use a rowid value retrieved from a select statement in a
following update statement.

{
list LL;
rowid myrowid;
LL = list_open(“select rowid, name from staff”, 100);
myrowid = list_curr(LL,0);
exec_sql(“update staff set name = ‘oldname’

 where rowid =:1”,myrowid);
}

trigger
The trigger datatype, or variable, is a pointer to another block of code. For more
information about writing and using triggers, read “Variables and Triggers” on page 63.

After you assign a code block to a trigger variable, you can pass the block to other trigger
functions as a parameter. You execute a trigger variable by passing it to the execute()
function. For example:

{
trigger tvar;
tvar = {printf("World");};
printf("Hello");
execute(tvar);
}

DesignVision Users Guide 73

Chapter 7 Datatypes Number Operations
Number Operations
Use the int and numeric datatypes for numerical computation. int is a whole number and
numeric can include floating point numbers. For example, int x can have values NULL
or +/-maxint where maxint is machine-dependent; numeric x can have a value of
NULL or a positive or negative real number.

Unlike variables in C, NULL is another state for a variable in TRIMpl. NULL is not zero
or any other digit; however, for certain operations, TRIMpl treats a variable as such.

TRIMpl supports arithmetic, bit-wise, and boolean operations.

Arithmetic

Operation int numeric Example

Auto-increment yes yes x++;

Auto-decrement yes yes x- -;

Unary negation yes yes x = -x;

Addition yes yes x = x + 9;

Subtraction yes yes x = x-6;

Multiplication yes yes x = x * 14;

Division yes yes x = x / 2;

Modula yes no x = x % 2;

Bitwise

Operation int numeric Example

AND yes no x = x& 4;

OR yes no x = x | 255;

XOR yes no x = x ^15;

One’s complement yes no x = ~n;

Boolean

Operation int numeric Example

Logical AND yes yes x = x && y;

Logical OR yes yes x = x | | y;
DesignVision Users Guide 74

Chapter 7 Datatypes Number Operations
Operations Involving Nulls
A NULL is treated as a 0 (zero) in all operations except for multiplication and division
where NULL is a NULL. A non-NULL value divided by a NULL results in a division-by-
zero error.

Datetime Operations
You can perform the following arithmetic operations on datetime variables.

Operation Example

Auto-increment d++;

Auto-decrement d - - ;

Addition d = d + 7;

Subtraction D = d-365;

Although a datetime variable also includes time information, these operations alter only
the day values.

Valid Dates
Valid datetime values are from 12:00 a.m., January 1, 0000 to 12:59:00 p.m. December 31,
9999, inclusive. Leap year days are automatically resolved. If you try to set a datetime
variable with an invalid date (for instance, February 30, 1990) you receive an illegal data
error.

Datetime Manipulation
You can convert datetime variables to int or numeric datatypes. The result of the
conversion is the number of days since January 1, 0000. The fractional day is also
returned for a numeric. However, you cannot directly convert ints and numerics back
into datetime.

To convert an int or numeric to datetime, simply add the data to a datetime variable that
contains JAN 01, 0000:

dt = to_date("JAN-01-0000","MON-DD-YYYY") + 728932;

Examples

/*
** Calculation of Day of the Week
*/
{
datetime dd;
char day[9];
int x;
dd = prompt("Type in a date ==> ") /* Get a date from user */
x = to_int(dd) % 7;/* Any date MOD 7 returns 0-6; 0=Sunday */
day = decode(x,0,"SUNDAY", 1,"MONDAY", 2,"TUESDAY",

3,"WEDNESDAY",4,"THURSDAY",5,"FRIDAY",6,"SATURDAY");
printf(dd ^^ "is a " ^^ day);
DesignVision Users Guide 75

Chapter 7 Datatypes Number Operations
}

/*
** Calculate Age in Days
*/
{
datetime dd;

dd = prompt("Please type in your birthdate (DD-MON-YY) ==> ");
printf("You are " ^^ to_int(SYSDATE-dd) ^^ " days old.");
}

/*
** Calculate Number of Days in Month
*/
{
datetime dd;
int days,year,month,leap;

dd = prompt("Type in a date (DD-MON-YY) ==> ");
year = to_int(to_char(dd,"YYYY"));
month = to_int(to_char(dd,"MM"));

if ((!(year % 4) && (year % 100)) || !(year % 400)) leap = 1;
if (month in (4,6,9,11)) days = 30;
else if (month != 2) days = 31;
else days = 28 + leap;

printf("That month contains " ^^ days ^^ " days");
}

Storing and Retrieving Datetime Data
Even though the default format mask only shows date, DV and TRIM store the entire
datetime value it receives (which can include the time value). This feature can be
misleading when for example, the application uses SYSDATE in calculations and does
not account for timestamp data storage.

You can adjust the value to DATE, removing TIME with the following procedure:

mydate = to_date(to_char(SYSDATE, “DD-MON-YY”));

If your datetime mask uses only "YY" for the year, then the century value is read from the
operating system. For example,

mydate = to_date("09-JUL-00","DD-MON-YY");

If your machine year is 1999, then mydate is 1900; if it is 2000, then mydate is 2000. If you
must use two character year masks and there is a possibility of an ambiguous century,
use the "RR" mask.
DesignVision Users Guide 76

Chapter 7 Datatypes char/string Operations
char/string Operations
C lets you manipulate a string one character at a time. TRIMpl treats a string as an entity.
Constant strings are designated by double quotes (‘‘abcd...“ABC...“). To include a double
quote in a string, simply place two double quotes together.

To copy a string from a source to a destination:

dest_buffer = source_buffer;

TRIMpl provides direct assignment for strings. Note, however, that assignment is not
simply a pointer to the buffer but an actual copy of the contents of source_buffer to
dest_buffer.

Concatenation (^^) is the only operation specifically for char/string variable
datatypes:

{
char s1[10],s2[10],s3[20];
s1 = "Trifox"; s2 = "Inc";
s3 = s1 ^^ ", " ^^ s2;
printf(s3); /* result: "Trifox, Inc" */
}

NULLs
In a char/string a NULL value is a zero-length string. Thus, you can set a char/string
variable to NULL in either of the following ways:

str1 = "";
or

str1 = NULL;

Auto-Truncation
TRIMpl automatically truncates the source string to fit the destination:

{
char src[10], dst[4];
src = "TRIMtools"; dst = src; printf(dst); * result: "TRIM" */

Token Pasting
To make long string constants easier to use, TRIMpl supports token pasting, the merging
of two or more string constants into one string at generate time.

{
char dst[80];
dst = "TRIMtools "

"are "
"nice!";

printf(dst); /* result: "TRIMtools are nice!" */
}

DesignVision Users Guide 77

Chapter 7 Datatypes Glob Operations
Examples
/*
** Case Conversion
*/
{
char text_string[80];
text_string = "Trifox Tools";
text_string = translate(test_string,"abcdefghijklmnopqrstuvwxyz",

"ABCDEFGHIJKLMNOPQRSTUVWXYZ");

printf(test_string); /* result: "TRIFOX TOOLS" */
}

/*
** String Token Parser
*/
{
int i,j;
char src[80];

i = 1; /* initialize index to 1st chararacter */
src = prompt("Type in a string->");/* get string into SRC variable */
while (i <= length(src)){ /* while index is within the string */

if(substr(src,i,1)! = " "){ /* if index is not pointing to space*/
for(j=0;(j+i) <= length(src);j++)/*then get length of the token */

if(substr(src,(i+j),1)==" ") break; /* if space then break */
dst = substr(src,i,j); /* copy substring to destination */
printf("Token->" ^^ dst); /* print the token */
i = i + j; /* adjust the index */
}

i++;
}

}

Symbolic Text
Text in dvApp applications such as column labels or text objects can be dynamically
replaced at runtime by using symbolic text with the gui_config function. Prefix the text
with “$” and use gui_config() to set the translation table. For example if a field label is set
to “$MyLabel” and gui_config() is used before the window is opened

list ll;
list_mod(ll,1,”MyLabel”,”Compensation”);
gui_config(gui_config_textlist,ll);

then “$MyLabel” will be replaced with “Compensation”.

A new call to gui_config() with a different translation table will not take effect until the
window is reopened. Also if a matching symbolic text is not found, then the original
symbolic text, e.g. “$MyLabel”, will be displayed.

Glob Operations
While glob variables appear simple, there are limitations to their use because of their
potential size. For example
DesignVision Users Guide 78

Chapter 7 Datatypes Datatype Conversions
{
glob glb1,glb2;
glob_util(glob_file,glb1,”SomeFile”);
glb2 = glb1;
glob_util(glob_file,glb1,”ADifferentFile”);
}

The assignment “glb2 = glb1;” does not make a copy of glb1 but rather glb2 is pointing to
the same data as glb1. This means that when glb1 is loaded from a new file, glb2 is also
pointing to that new data.

Also it is very important to understand that

glob_util(glob_free);

will free all globs in the entire session, not only variables but also any globs that are in
lists.

Datatype Conversions
TRIMpl automatically converts datatypes in expressions where necessary. All
conversions are performed "left-to-right." That is, all data in an expression is converted
to the type of the first (leftmost) data. If you don’t want all the datatypes to be converted
to the first type that appears, be sure to convert all datatypes in an expression.

For example, consider the following code:

{
char buf[32];
numeric n;

n = .6020599913279624;
buf = "0.3010299956639812";

/***/
/* Example one */
/***/
if (buf > n) printf("Wrong");
else printf("Correct");
if (n < buf) printf("Wrong");
else printf("Correct");

/***/
/* Example two */
/***/
n = .6020599913279624;
buf = "0.6020599913279624";
if (n != buf) printf("Wrong");
else printf("Correct");
if (buf != n) printf("Wrong");
else printf("Correct");
}

In Example one, variable n converts to a char string when the

 if (buf > n)
DesignVision Users Guide 79

Chapter 7 Datatypes Datatype Conversions

expression is evaluated. n converts to ".6020599913279624," and the comparison is
performed on the character strings "0.3010299956639812" and ".6020599913279624". In
this case, the automatic conversion assumes an inappropriate datatype: because the
character "0" collates higher than the character "." (in ascii), "0.3010299956639812" is
greater than ".6020599913279624".

In the second if statement

if (n < buf)

the character string in buf converts to a numeric and the result is the "correct" numeric
answer.

Example two has the same problems. To avoid inappropriate datatype conversions,
explicitly convert the data. For example,

{
char buf[32];
numeric n;

n = .6020599913279624;
buf = "0.3010299956639812";

/***/
/* Example one */
/***/
if (to_number(buf) > n) printf("Wrong");
else printf("Correct");
if (n < to_number(buf)) printf("Wrong");
else printf("Correct");

/**/
/* Example two */
/**/
n = .6020599913279624;
buf = "0.6020599913279624";
if (to_number(buf) != n) printf("Wrong");
else printf("Correct");
if (n != to_number(buf)) printf("Wrong");
else printf("Correct");
}

Now you can clearly see the datatypes that are being compared.
DesignVision Users Guide 80

DesignVision Users Guide

Chapter 8

Working with Lists

TRIMpl lists are largely responsible for much of the language’s power and flexibility.
Very few operations exist that cannot be performed on items in TRIMpl lists and by
placing data items in a list, you use local memory instead of accessing database resources
every time the items are needed.

List Components
A list is a unique datatype that is very well suited for the dynamic nature of accessing
relational data. A list variable is a dynamic mxn array of data. The data can be of any
type, including triggers and lists. Internally the list has two parts:

• The list header.

• Dynamically-allocated data body.

The list header is a pointer to a data block and the current row of data and serves as the
entry point to the data. The header is the object that is defined by a list variable. The data
block contains the title of the list, the basic list structure, and the data within the data
body.

As an example, a list variable, LL1, is assigned to a list. LL1 points to the data body. Also,
LL1 has its current-row pointer pointing to data row 3. As long as only one list header
(variable) points to the data body, any operation can be performed on the data to which
LL1 points. However, when a second list variable, LL2, is assigned to LL1, the following
occurs:

1. LL2 points to the same data body as LL1.

2. Although LL1 has current row set to row 3, LL2 points to row 0.

3. The reference count for the data body is incremented by 1.

4. Because the reference count for the data body is greater than one, the data body
becomes a read-only list. Any list modification operations, such as adding, deleting,
or modifying records returns an error.

Aside from the number of columns, the data in the list is free-form. For example, data in
column 0, row 0, of the list could be an integer value while data in column 0, row 1, of the
list could be a datetime value. In fact, lists can be stored within lists.

No matter how many list variables are pointing to the list data body, only one copy of the
data exists in memory. Having a single copy improves application performance by
reducing redundant data.

Lists can also be shared across applications and users by storing them in shared memory.
Lists in shared memory are inherently read-only and are usually used for storing static
lookup tables such as zip codes.
DesignVision Users Guide 81

Chapter 8 Working with Lists Graphic Lists
Graphic Lists
Use a graphic list to display graphics in a window. Because it is implicitly declared when
you create a graphic list object in your window, you do not declare a list variable for it.
You can put as many graphic list commands as required into the list.

You can easily create dynamic graphs with text captions and so on just by combining
these simple elements.

The format of the graphic list record is a single column with the following elements:

1. id — the object’s id, usually 0.

The object id is used to identify which graphic object has been clicked. The list
trigger is called when the graphic object is clicked and the id is returned in the g.AUX
predefined variable. If you do not need this feature, simply set the id(s) to -1.

2. type — the graphic object type.

3. r — the beginning row coordinate of the list object.

4. c — the beginning column coordinate of the list object.

5. h — see Type below.

6. w — see Type below.

7. name — the name of the bitmap that has been loaded into the image area by using
file_copy().

8. width color fillcolor — see specifics in each type description.

Type Definitions
The following graphic types are defined in dv.h. Beginning coordinates for all graphics
list items are represented as r,c (0,0) in the upper left corner and are always expressed
in pixels. The graphic types are:

• graphic_type_line

• graphic_type_rectangle

• graphic_type_roundrect

• graphic_type_arrow

• graphic_type_ellipse

• graphic_type_text

• graphic_type_bitmap

• graphic_type_poly

• graphic_type_bezier

• graphic_type_area

• graphic_type_pie

• graphic_type_file
DesignVision Users Guide 82

Chapter 8 Working with Lists Graphic Lists
• graphic_type_popup

All types except bitmap, text, file, popup, and area can have an optional line width and
color. You specify the line attributes as

(width red green blue

width can be values from 0 to 5 and the the colors are identified with the standard RGB
values from 0-255. Additionally rectangle, roundrect, ellipse, and pie can have an
optional fill color

(width red green blue red green blue

graphic_type_line
To draw a line from (10,10) to (35,40), add the following line to the graphic list:

list_mod(structure,1,"0 "^^graphic_type_line^^" 10 10 35 40");

To add some color, append the width and color option. The following presents a thin red
line.

list_mod(structure,1,"0 "^^graphic_type_line^^"
10 10 35 40 (1 255 0 0");

graphic_type_rectangle
To draw a rectangle with corners at (10,10) and (35,40), add the following line to the
graphic list:

list_mod(structure,1,"0 "^^graphic_type_rectangle^^" 10 10 35 40");

To add some color, append the width and color option. The following presents a thin
green line:

list_mod(structure,1,"0 "^^graphic_type_rectangle^^"
10 10 35 40 (1 0 255 0");

To fill the rectangle with red, add a fill color:

list_mod(structure,1,"0 "^^graphic_type_rectangle^^"
10 10 35 40 (1 0 255 0 255 0 0");

graphic_type_ellipse
The ellipse is bounded by an imaginary rectangle defined by the points r,c,h,w. To
draw an ellipse that fits inside the above rectangle, add the following line to the graphic
list:

list_mod(structure,1,"0 "^^graphic_type_ellipse^^" 10 10 35 40");

To make the line blue and the inside of the ellipse purple, add the following line to the
graphic list:

list_mod(structure,1,"0 "^^graphic_type_ellipse^^" 10 10 35 40
(1 0 0 255 255 0 255");
DesignVision Users Guide 83

Chapter 8 Working with Lists Graphic Lists
graphic_type_text
This type does not use w,h; the actual text string follows c.

graphic_type_roundrect
This command draws a rectangle similar to graphic_type_rectangle but with rounded
corners. To draw a blue rectangle with rounded corners at (10,10) and (35,40), add the
following line to the graphic list:

list_mod(structure,1,"0 "^^graphic_type_roundrect^^"
10 10 35 40 (1 0 0 255");

graphic_type_bitmap
To present an image, first load the image into the internal graphic memory and then
reference that name in the graphic list. If you do not define h,w for a this type, then the
graphic fills the entire graphic list area.

For example, if the window list object is called structure, the following code loads it
with a bitmap stored in file “structure1.bmp”.

file_copy("structure1.bmp","gui!image:structure1.bmp");
list_mod(structure,1,"0 8 0 0 0 0 structure1");
list_view2(structure,-1,-1,-1,0);

graphic_type_arrow
This is the same as a graphic_type_line except that it has an arrow at the second point
(w,h).

graphic_type_poly
This type draws a line that connects all the points given in the list record. To draw a line
through (10,10), (20,20), (20,40), and (55,66), add the following line to the graphic list:

list_mod(structure,1,"0 "^^graphic_type_poly^^"
10 10 20 20 20 40 55 66");

To make it a green line, add the width and color:

list_mod(structure,1,"0 "^^graphic_type_poly^^"
10 10 20 20 20 40 55 66 (1 0 255 0");

graphic_type_bezier
This option draws a Bezier curve. You need to specify a minimum of four points and
then you can specify sets of three points. To draw a Bezier curve through the points
(10,10), (20,20), (20,40), (44,55), (75,71), (99,101), and (111,123), add the following line to
the graphic list:

list_mod(structure,1,"0 "^^graphic_type_bezier^^"
10 10 20 20 20 40 44 55 75 71 99 101 111 123");

graphic_type_pie
This option draws an arc. You need to specify a starting point, radius, start angle, and
span. The start angle is the number of degrees counter-clockwise from the x-axis to begin
DesignVision Users Guide 84

Chapter 8 Working with Lists Creating Lists
the pie. The span is the degrees of the arc. To draw a pie starting 30 degrees from the x-
axis and spanning 45 degrees, add the following line to the graphic list:

list_mod(structure,1,"0 "^^graphic_type_pie^^"
100 100 20 30 45");

To outline the pie in black and fill it with red, add the following line to the graphic list:

list_mod(structure,1,"0 "^^graphic_type_pie^^"
100 100 20 30 45 (1 0 0 0 255 0 0");

graphic_type_area
This type creates an active area which returns its id when the user left-clicks anywhere
within the defined area, unless another graphic object is under the cursor. The graphic
list’s trigger executes and the area’s id is returned in g.AUX. The boundaries of the area
are defined the same as for graphic_type_rectangle.

graphic_type_file
This type saves the graphic objects defined in the preceding list rows to a file. For
example,

list_mod(structure,1,”0 “^^graphic_type_file^^
“ gui!c:\tmp\myfile.bmp”);

writes the bitmap image described in the structure list to c:\tmp\myfile.bmp.

graphic_type_popup
This type creates a popup menu attached to the graphic list. It is unique among graphic
list items in that it does not have beginning coordinates. It appears based on where the
cursor is when the right mouse button is pressed. The format is

id graphic_type_popup level text

level is an integer used to group submenu items where 0 is the top level. For example, to
create a popup menu with items

File...
Open
Save

the list entries are

list_mod(structure,1,”1 “^^graphic_type_popup^^” 1 Open”);
list_mod(structure,1,”2 “^^graphic_type_popup^^” 1 Save”);
list_mod(structure,1,”1 “^^graphic_type_popup^^” 0 File”);

The submenu items are presented first and then the containing item. There can be
multiple submenu levels. The id value for the containing item does not have to be unique
as it will never be returned.

Creating Lists
You can create a list using one of three basic functions:
DesignVision Users Guide 85

Chapter 8 Working with Lists Creating Lists
• query()

• list_mod()

• list_open()

Query()
You can only use query() in window applications (DVapp designs). When an
application calls query() it executes the current window’s SELECT statement and
assigns all the returned information to that window’s preallocated window-name.WL list
variable. If there is an old list data body, it is replaced by the new one.

list_mod()
Using list_mod() on a NULL list creates a list data body based on the number of
columns in the list_mod() call.

list_mod() is typically used to add new records to an existing list. For example, if list
LL1 points to a two column list, then

list_mod(LL1,1,"Hello","Dolly");

adds a new record to the list after the current record, if any, with the values “Hello” and
“Dolly” in the first and second columns, respectively.

If LL1 is NULL, meaning that it does not point to an existing list data body, then the
above example first creates the list data body and then inserts a new record.

list_open()
list_open() lets you define an empty list or load a list from a file, directory, database
or shared memory. You can specify any of the following:

• Column definition

• SQL SELECT statement

• File

• Directory and filename mask (see “Directory” on page 60).

• Control list

• Shared memory

The list_open() function definition is

list list_open(spec,limit[,title[,...]])
expr spec
int limit
string title

The spec parameter is where you specify the different methods.

Column Definition
This approach creates a list data body using a series of blank separated numbers. The list
data body has one column for each blank separated number. The values are only used
DesignVision Users Guide 86

Chapter 8 Working with Lists Partial List Loading
during display operations, list_view(), list_view2(), list_view3(), to
determine the display column widths. The list data body is empty.

LL1 = list_open("1 4 8 2 6",100);

creates a list data body with five columns.

SQL SELECT
You can use a SQL SELECT statement to create a list data body with as many columns as
there are select-list items. The list data body has the minimum of the select result table or
limit number of rows. For example, if the STAFF table has seven columns and 35 rows,

LL1 = list_open("select * from staff",100);

creates a list data body with 7 columns and 35 rows. You can also use the SQL keyword
to specify a resultset if your SQL syntax does not begin with the SELECT keyword. For
example,

LL1 = list_open("sql select * from staff",100);

File
You can also create a list data body from a file, either ASCII or a previously stored binary
list. spec contains the filename to open. If the file is ASCII, then a one-column list data
body is created with a row for each line of the file. If the file is a previously stored binary
or XML list, then an exact replica of that list is created.

Control list
If the ASCII file is delimited, then spec can contain a control list that describes the
columns in the file. You can describe both variable and fixed column files as well as
numeric and datetime formats.

Shared memory
Finally, a list header can point to a shared memory list. The spec for this approach is

"S listname"

The “S” tells list_open() to look in the shared memory control file for a list called
listname. Shared memory lists are read-only and are typically used for static data.

Partial List Loading
Specifying a limit on the list_open() or query() function that is less than the
amount of data available in the database or file creates an incomplete load. When a list
variable is assigned to a list and the last data a row is copied to the list variable’s data
body, an internal flag is set. This flag indicates that the information in the list is complete.

The list_eos() function returns 1 when the maximum or fewer rows have been
loaded from a source or 0 when the loading function reaches its limit before all the data
can be read in.

You can use list_more() to continue loading a list from the source used to create the
list.
DesignVision Users Guide 87

Chapter 8 Working with Lists Status Information for a List Row
{
list ll; /* Assume staff has 30 rows of data */

/* Select 4 rows into list */
ll = list_open("SELECT * FROM staff", 4);
printf("1. Number of data rows = "^^list_rows(ll));
printf("2. End of load status = "^^list_eos(ll));
list_more(ll,100,false); /* Load up to 100 more rows of data */
printf("3. Number of data rows = "^^list_rows(ll));
printf("4. End of load status ="^^list_eos(ll));
}

When you open a list, the load limit begins at 4. However, list_more() allocates
additional space as needed. Also, if you have set the clear flag in list_more() to true
instead of false, then the line 3 prints that the list contains 26 rows. list_more() also
works when the data source is a file. If the source is a file,
list_more(11,100,false); reads the next 100 rows. It then resets the current row
pointer to the first new row.

Status Information for a List Row
Each data row entry in a list has an integer variable indicating its list status. The status is
used in a variety of ways by different functions. For example, if a SELECT in a
list_open() returns a number of data rows, the rows all have their status set to 1. If
list_mod() modifies a row, the status is set to 2. You access a row’s list status through
list_stat().

The list status can be used in a variety of ways, but you must be careful since certain
TRIMpl functions affect the value. Using list_stat() on a NULL list variable
generates an error. If you use it on an empty list, -1 is returned, otherwise the correct
status is returned. Also, list_vis() returns a count of non-zero list status data rows.

Saving a List
Lists can be saved to files, either ASCII, binary, or XML, or to shared memory using
list_file(). The entire list can be saved or specific columns can be omitted.

Saving a list as ASCII creates a text file with all data items lined up. The list’s structure is
not preserved in the text file. This means that when the file is used to create a new list
using list_open(), the new list has only one column. If you specify the binary option
in list_file(), the list’s structure is preserved as is the datatype of each item. The
binary file is in a machine-independent format. Finally if you specify the XML option in
list_file(), the list is stored in XML format. If you subsequently use list_open()
on the file, the new list will preserve the original list’s format.

If the file specification is in the form “S listname”, then the list is filed in shared
memory as listname. A subsequent list_open() using “S listname” points to this
list data body.

The following example creates a separate copy of the subset of the data in a list.

{
list ll; list gg;
ll = list_open("SELECT * FROM staff",100); /* Retrieve data into a

 list */
printf("number of columns in LL = "^^list_cols(ll));
list_file(ll, "temp.out","b",0,3,4); /* Save a subset of the

list to temp.out */
gg = list_open{"temp.out",100); /* Load and assign gg from */
the printf("number of columns in GG = "^^list_cols(gg)); /* file */
DesignVision Users Guide 88

Chapter 8 Working with Lists List Reference
}
When you use list_file(), the column options (0,3,4) only indicate which columns
are to be used in creating the sublist, and not the order in which they appear in the list.
The order is always low to high. Thus, the following statements are equivalent:

list_file(ll, "temp.fil", "b", 1,2,3);
list_file(ll, "temp.fil", "b", 3,1,2);

Remember:

• To preserve the columns when saving a list, save it as a binary file:
list_file(ll, "tt.file", "b");

• To merge all columns into one string for every data row in the list, save the list as
an ASCII file: list_file(ll, "tt.file", "a");

List Reference
A reference count in the list data body keeps track of how many list variables are
referencing it. If the count is greater than one, then the list cannot be modified. You can
reference lists in a number of subtle ways. For example, if you pass a list as a parameter
to a function and assign it to a local list variable, the reference count is incremented. Even
when control leaves that function, the reference count is not decremented because all
TRIMpl variables are static. You must explicitly close the list, either by assigning the
variable to NULL or by calling list_close().

If you need to create a list in a function and pass it back to the caller, use list_close()
in the return statement. For example,

{
list LL1; LL1 = list_open("select * from staff",100);
return(list_close(LL1));
}

The LL1 list variable is closed but the list data body is not destroyed. Of course, the
calling TRIMpl code must assign the returned list to a list variable.

Referencing a list passed to a function as its parameter marker, that is, parm[0], for
example, causes no new list reference to be made. This method lets you manipulate the
current row index information in the original list.

Getting Information on Lists
You can get information about the list, not just its contents. These functions operate on
elements of a list:

Function Returns

list_colix() Column position given name.

list_colname() Name of a column in a list.

list_cols()O Number of columns in a list.

list_eos() Load status of file.
DesignVision Users Guide 89

Chapter 8 Working with Lists Getting Information on Lists
list_pos() Current row index value.

list_rows() Number of rows in a list.

Function Returns
DesignVision Users Guide 90

Chapter 8 Working with Lists Displaying (Viewing) Lists
Navigating Through Lists
To reference current row pointer information, use list_pos(). If two list variables are
assigned to the same data body, each has its own independent current row pointer.

When a list variable is first assigned, the list variable’s current row pointer is set to the
first row in the data body (row 0) if it exists, or -1 if the list is empty (list outline).

Most list_* operations are performed on the current row or a column within the
current row. If you want to implement vector operations you must create a user function.

A number of functions change a list variable current row index. However, the following
functions are primarily geared to performing just those functions:

Function Moves

list_seek() To an absolute data row.

list_next() To the next data row. You can also use the ++ operator on the
list variable.

list_previous() To the previous data row. You can also use the -- operator on
the list variable.

Example
If the current row index is set to data row 0 and list_previous() is called, no
operation is performed. Also, if the current row index is set to the last data row in a list,
no operation is performed when list_next() is called. However, using list_seek()
to find a row greater than the number of rows in the list, generates a “list row out of
range” error.

{
list ll; /* Assume staff has 30 rows */
printf("The Current Row Index = "^^list_pos(11));
ll = list_open("SELECT * FROM staff", 100);/* Select all columns */

/* from staff table */
printf("There are now "^^list_rows(ll)^^ "rows loaded");
printf("The Current Row Index (with data) = "^^list_pos(ll));
list_next(ll); /* Move current row to */

/* next */
printf("The Current Row Index (after list_next()) = "^^list_pos(ll));
list_previous(ll); /* Move current row back*/

/* one */
printf("The Current Row Index (after list_previous()) =

“^^list_pos(ll)); list_seek(11,9); /* Move to the 10th data*/
/* row*/

printf("The Current Row Index (after list_seek()) = "^^list_pos(ll));

}

Displaying (Viewing) Lists
You can use one of three list_view() functions to display lists in their basic format.

These functions draw a box on the screen and display a list of information. End users can
scroll the window using directional keys ([Up], [Down], etc.) to see all the list data and
select rows from the list.
DesignVision Users Guide 91

Chapter 8 Working with Lists Displaying (Viewing) Lists
The functions not only return a selected row’s column, but also set the current row index
to that row and may set the list status to be a value of item_select() or
item_tagged(), list_view2()).

Terminal Manager
Calling a list_view() function invokes the built-in terminal manager. (The terminal
manager is always called when a DVapp application starts running, but is only called
when needed by a stand-alone TRIMpl design.) The terminal manager causes TRIMrun
to search for a file called filename.KEY which contains a terminal initialization string.
The correct key file must be available when using these functions in stand-alone
applications.

Note that the current row index is set to the last data row indicated by the cursor when
the user exits a function.

Rules for list_view()
When you work with list_view() functions, remember:

If … Then …

Data in a list row/column is not
viewable (for example, a list variable,
trigger variable, or row id value)

That column in the row appears as blank
spaces.

A row in a list has its status set to
item_delete() and is not displayed

It is still included in calculations of the
current row position.

The list is empty or all its rows have
their list status set to item_delete()

The function returns a null value.

All the list_view() functions draw boxes to display data following these rules:

If … Then …

You give coordinate or size values that
exceed the screen dimensions

The function to use internal maximum
values.

You use “0,0” as the “column,row”
origins

The top and left sides of the box are
suppressed.

You specify one or more optional
view_cols()

All columns are displayed.

You don’t specify view column options. All columns are displayed.

Rows of data in a list can’t all fit into the
box or window

A plus sign (+) appears at the top or bottom
left corner of the box to indicate that more
data is above or below the window contents.
DesignVision Users Guide 92

Chapter 8 Working with Lists Choosing the Correct list_view
Choosing the Correct list_view
TRIMpl has three list_view* functions that have different strengths. The following
table provides direction for you.

Use … To …

list_view() Find which column’s data in the selected row is to
be returned when the user presses [Enter].

list_view2() Tag multiple items.

list_view(), list_view3() Tag single rows.

list_view3() with browse
option

Display a popup informational window (no
input).

list_view2() Return a value between 0 and 31 when the
predefined exit key is pressed. This function
allows a user to toggle a row’s list status between
4 and 1 by pressing [Enter].

list_stat() Pre-tag rows (sets the row’s list status value to 4).

Place and size the box/window.

NOTE: If the exit key is set to [Enter], then
list_view2() behaves just like list_view()
but does not return a value. It does update the
current row index.

list_view3() To let users select only one item and return the
rtrn_col value and update the current row
index. If abt_key is pressed, NULL is returned
and the current row value remains the same. This
function also supports options, which are
currently defined in trim/dv.h as “List_view3
options”.

Reading Data from a List
You can read data from a list in several ways. The previous section on list_view()
describe how to select data from a visible list and return it via a function. The following
functions let you extract information from a list. Note that all operations affect only the
data row specified by the current row index.

Use … To …

list_curr() Read a column from a list.

list_find() Search column for a key.

list_get() Get multiple columns from a list.

list_ixed() Read list at an absolute position.
DesignVision Users Guide 93

Chapter 8 Working with Lists Deleting, Inserting, and Updating Rows
Neither list_find() nor list_ixed()operate on the current row index.
list_find() moves through all the columns searching for the key string and returns
that value when it finds a match. list_ixed() also circumvents the current row index
and reads a column at a given row index.

list_curr() and list_read() differ in that the latter advances the current row
index.

list_get() allows for data within the columns of the current row to be moved out into
appropriate variables. The number of variables must be equal or less than the number of
data columns in a list row.

Deleting, Inserting, and Updating Rows
You have three basic functions for manipulating data rows in a list: list_mod(),
list_modcol(), and move_f2l().

list_mod()
Use this function to insert, update, and delete records in the list. When you INSERT, the
current row index is set to the newly inserted item. When you DELETE, the current row
index is moved forward, if possible. When an item is deleted, it is physically removed
from the list. (This action is different than setting the list status to item_delete.) By
DELETING all items, you can empty a list without changing its structure. When you
UPDATE, the current row index stays on the updated record.

list_modcol()
To modify a single column in a current data row, use list_modcol(). This function
alters the list status for a row entry to item_update.

move_f2l()
For window applications, move_f2l() provides a simple method of moving the
window field data to the window list. It keeps track of which fields are list fields,
whether there is a unique row identifier in column 0 of the window list and so on.

Summary
Remember the following when using list variables:

• A list variable is a pointer to a data body.

• Data rows begin with 0 and end with n-1.

• Data columns begin with 0 and end with n-1.

• DVapp window lists (window list variables) use column 0 as the row identifier.
(You can turn this off by Atl-click on the window > Attributes>
Window Atr Dft Sel.)

list_read() Read columns from a list.

Use … To …
DesignVision Users Guide 94

Chapter 8 Working with Lists Summary
• When references exceed 1, lists become read-only.

• A list can contain any variable type in any cell.
DesignVision Users Guide 95

DesignVision Users Guide

Chapter 9

Using TRIMrpc

If you have been struggling with how best to make use of TRIMpl portability, you’ll
welcome the Remote TRIMpl enhancement to DesignVision functionality, called
TRIMrpc.

Now you can access TRIMpl application code (the RPC— remote procedure call) from
any machine on the network. Any programs you created with TRIMpl, including
calculations, text manipulation, and access programs, for example, become transparently
available to any other TRIMpl “client” on the same network.

Maintaining multiple versions for platform compatibility, moving and updating files are
activities of the past. Simply connect through the new driver and call the code. Reuse gets
a new meaning for TRIMpl programmers and the systems on which they work.

vtxhost.trm is a complete TRIM runtime. Because the variables are kept in a static
variable space, they remain the same for all calls. You can use persistent stored procedure
calls and be confident that they will run the same on all platforms with all development
languages.

Creating the TRIMpl Application
To access your useful TRIMpl applications that do not require screen input and output
(reading values from a screen or writing to a screen is not currently available through
TRIMrpc), you must include the following new #defines in the trim/dv.h file when
you create the executable runtime:

#define db_connect 1
/* connect to data base*/
#define db_release 2
/* release database*/
#define db_commit 3
/* commit work*/
#define db_rollback 4
/* rollback work*/
#define db_open 6
/* open cursor &describe*/
#define db_exec 11
/* execute SQL statement */
DesignVision Users Guide 96

Chapter 9 Using TRIMrpc How TRIMrpc Works
How TRIMrpc Works

Oracle
Driver

TRIMpl
Driver

COBOL
Client

VTXOPEN
VTXEXEC

TRIMpl

connect(0,“net:u/s@owl!vtxhost.ora”);
connect(1,“net:mypltrim@hawk!vtxhost.trm”);

exec_sql(“getinfo”,LL);
LL = list_open(“select results,”,10);

mypltrim.run

Client

connect(1);

owl on NT hawk on Solaris

TRIMrpc works like VORTEX drivers in your enterprise. Your client issues a connect, this time
to a TRIMpl application on a networked machine, and calls the RPC when it needs the stand-alone
application’s functionality.

Client Functions
The client can issue one of five TRIMpl functions (which are completely documented in
the TRIMpl Reference Guide) which are translated to one of six new #defines for the
RPC. The RPC performs its tasks and returns requested information to the client. In this
process, either the client or the RPC application can use any database on the network for
which it has access and authority.

Releasing the database is implicit when a client exits or when it reuses an existing
connect ID for a new connection. You can pass up to two parameters (depending on the
function) in your call.

• connect() — Connect to a database using a standard connect string.

connect(0, “net:mypltrim@hawk!/usr2/bin/vtxhost.trm”);

The protocol must be “net” since the RPC is on a remote machine. The second
element in the connect string is the RPC application name without the .run
extension. Following the exclamation mark, put the fully-qualified path to the
executable.
DesignVision Users Guide 97

Chapter 9 Using TRIMrpc How TRIMrpc Works
• exec_sql() — Issue a command to the remote procedure code (RPC).

exec_sql(“getdata”, LL);

• list_open() — Get results from the RPC.

ll = list_open(“select results”, 10)

• commit()— Commit the work.

• rollback() — Roll back the work.

Parameters
When you write the TRIMpl stand-alone application, use the #defines according to
their purpose. The RPC receives the calls as a series of four parameters.

list_open()
This function translates into the following four parameters:

parm[0] — db_open

parm[1] — A command string that must begin with SELECT.

parm[2] — This (optional) parameter contains a list of parameters.

parm[3] — If the function doesn’t return an error, the RPC returns a list to the client. The
list must have at least one row.

The driver automatically executes a list_more(list,n,true) where n is twice
the number of records that could fit in the fetch buffer.

If the columns in the list have names these are used in the describe. Otherwise, the
RPC uses “COLn” to describe the columns.

exec_sql()
parm[0] — db_exec

parm[1] — Command string.

parm[2] — This (optional) parameter contains a list (which could be multi-row) of
parameters passed from the client’s exec_sql() call.

parm[3] — If the function doesn’t return an error, the RPC returns an integer. You control
the integer’s meaning in the RPC.

commit()
parm[0] — db_commit

parm[1] — An integer that indicates if a write transaction should follow a commit/
rollback.

rollback()
parm[0] — db_rollback
DesignVision Users Guide 98

Chapter 9 Using TRIMrpc Error Handling
parm[1] — An integer that indicates if a write transaction should follow a commit/
rollback.

For example for the following TRIMpl client call

 exec_sql("cmd",1958)

The RPC receives:

parm[0] is db_exec
parm[1] is “cmd”
parm[2] is a list with one row and one column with a value of 1958

Error Handling
If the client’s TRIMpl generates an error, the TRIMrpc driver traps it and returns a
database error. Use error() to explicitly pass back an error message.

Example
TRIMpl client:

{list LL;
LL = list_open(prompt("Enter list_open parm ==>

"),10000);
list_view(LL,0);

}

Driver:

{list LL;
if (parm[0] == db_connect) connect(0,"net:niklas/back");
else if (parm[0] == db_open) LL = list_open(parm.1,1000);
else LL = NULL;
return(LL);
}

DesignVision Users Guide 99

DesignVision Users Guide

Chapter 10
Debugging & Compiling

Because both the character-based and window-based run times are identical, the
debugger functionality is the same between the character-based and window version.
However, presentation differences between the character-based and the window versions
do exist.

The character-based debugger is a full-screen application with both a menu-driven and a
command-line interface. All commands are available via either method.

Using Debugger from DVapp

☞ Running the debugger from Designer

You can run the debugger from your interactive Designer session or compile the .gap file
with debugging information. If you compile the application, the debugger window
appears automatically.

To run the debugger from your interactive Designer session:

1. Start DVapp and open an application (.gap file).

File > Open, choose filename.

2. File > Run Options, check Debug, click OK.

3. Run the application by clicking the run icon.

And step through your application to debug errors.
DesignVision Users Guide 100

Chapter 10 Debugging & Compiling Using Debugger from DVapp
File

Restart Restarts the application.

Quit Quits the application.

Action

Errors Displays the last errors, both database and non-database.

Traceback Displays the stack trace from the current trigger to the beginning of the
application.

Variables

Tag Presents a list of all the application's variables. You can tag multiple
variables to be displayed using the Display tagged menu item. See also
Options > Auto display tagged variables.

Display tagged Displays the value(s) of the tagged variable(s).

Watchpoints Presents a list of all the application's variables. You can tag multiple
variables to be watched. Execution stops before any of these variables are
modified by TRIMpl code.

Display
watchpoints

Displays the value(s) of the watchpoint variable(s).

Parameters Displays the value(s) of the parameter(s) to the current trigger.

Breakpoints

Lines Presents a list of the current trigger's code lines. You can tag multiple
lines where execution stops. See also the Breakpoints action button.

Triggers Presents a list of the applications triggers. You can tag multiple triggers
where execution stops.

Reset all Resets all breakpoints.

Filters

Variables Presents a dialog where you can provide a filter to use when displaying
the list of variables.

Triggers Presents a dialog where you can provide a filter to be used when
displaying the list of triggers.

Watchpoints Presents a dialog where you can provide a filter to use when displaying
the list of variables.
DesignVision Users Guide 101

Chapter 10 Debugging & Compiling Running Character Version
Options

Auto display
tagged
variable(s)

If set, the values of all tagged variables are displayed whenever control
returns to the debugger. See also Variable > Tag menu item.

Display lists If set, list variables are presented in a list_view() window.

Stop on non
DB error

If set, execution stops on any non-database error.

Stop on DB
error

If set, execution stops on any database error.

Buttons

Continue Releases the debugger until the next breakpoint, watchpoint, or error if
the Stop option is set.

Step (in) Steps into functions.

Step (out) Steps over functions.

Finish Runs to the end of the current trigger.

Breakpoints Shortcuts to the Breakpoints->Line menu item.

Variable Performs a quick variable check.

Set Value Modifies a variable. Type in the new value and click the button.

Running Character Version
The menu and list-driven debugger appears in a window that you can move on your
screen.

When you enter the debugger, the executing trigger becomes the current trigger. To
change the current trigger, use SetCurTrg. Breakpoints are always turned on and off via
the current trigger and you can set watchpoints on all variables.

You can view variables one at a time, or in groups using the tagged variable option.

The last 32 lines of debugging information are always available via the message scroll
commands.

Depending on the traps and go_field statements, QUIT itself can be trapped with
unexpected results. Just press QUIT again.
DesignVision Users Guide 102

Chapter 10 Debugging & Compiling Running Character Version
Command Syntax
The commands are in the following general format:

[n] command [parm [parm ...]]

where:

• command — is the command to perform.

• n — is the number of times to perform command. Default is 1.

• parm — is an optional parameter (depends on command).

Cmd Description

t Prints a trace back.

s Single steps through every statement.

n Single steps through every statement in current trigger.

c Continues execution.

r Runs (restarts).

q Quits.

f Finishes current trigger (stops at return or end of trigger).

g GOTO statement (to a statement number). Be careful when you leave a multi-
statement line. Another goto (to the same line) moves to the correct line.

h Hides the debugger window. Press [Return] to bring back debugger windows.

p Prints a variable (you can use an optional index). If you do not provide
additional parameters, a list is presented. If a string contains a ’%’ a like is
performed in order to position the current item before presenting the list. If
’PARM’ is given, then all the parameters are displayed.

v Sets a variable’s value (optional index can be given). If no additional parameter
is given a list is presented. If a string contains a ’%’ a like is performed in order
to position the current item before presenting the list.

d Displays tagged variables.

m Sets (mark) tagged variables. Use ’-’ to reset all.

w Sets a watchpoint on a variable (optional index can be given). Use ’-’ to reset, ’-’
with nothing else resets all.

b Sets a breakpoint at line number (optional trigger can be given). Use ’-’ to reset,
’-’ with nothing else resets all. When a trigger name is given the breakpoint is
automatically set on the first executable line. If you don’t specify parameters, the
cursor is positioned within the code area and [Return] is used to toggle the
breakpoints. An [F3] returns you to the command area.

x Invokes old debugger. Should only be used by Trifox personnel.

e Prints last error and last database error.
DesignVision Users Guide 103

Chapter 10 Debugging & Compiling TRIMreport and Stand-Alone Applications
TRIMreport and Stand-Alone Applications
Most errors result in the application terminating. The exceptions are exec_sql() and
exec_row() functions that are within expressions as well as TRIMpl code in the
trap() function.

DVapp Performance Tuning
The DVapp and TRIMpl toolset, designed for heavy OLTP applications, are oriented to
achieve top performance. However, nearly any TRIMpl application can benefit from a
second “look.” DVapp has a built-in profiler to help you with that second look. It helps
you identify where the application processing time is spent.

In addition to looking at TRIMpl “gridlocks,” the profiler can help you evaluate other
design and programming considerations, such as:

• Lists — Each list object manages its own memory space. When you delete a row
from a list, its memory is moved to a free list attached to the list object. Thus
when you create a new list row or modify an existing list data column, TRIMpl
looks through this free list for memory first. If you perform many deletes and
your modifications are larger than the deleted data items, this free list may
become large. To clean up the free list you should issue a list_copy() from
time to time.

• Memory use — You can determine the memory use number only for an entire
application and identify where the memory use increases by running the
application with different data or a different number of cycles. DVapp never
returns memory to the operating system so your application should reach a
plateau rather quickly.

Using the Profiler
To activate the profiler, specify “-p” when you TRIMgen your application file (either the
TRIMpl .pl or the DV .gap). TRIMrun automatically creates a profile file called
application.prf when the application is run. The profile.pl TRIMpl script
creates a report from this file showing the inclusive and exclusive times.

To determine how much memory your application is using, specify -m on the DVrun
command line.

1. Generate your application file, for example

dvgen myexample.gap -p

2. Run the application with its parameters:

o Displays/sets list of flags:
• stop on DB error

• stop on non DB error

• stop on Ctrl-C (cannot continue after this)

• auto display tagged variables

Cmd Description
DesignVision Users Guide 104

Chapter 10 Debugging & Compiling DVapp Performance Tuning
trimrun.net myexample -p input output

3. Examine the automatically-created .prf file with either a simple text editor or the
profiler application.

If you choose to review myexample.prf with a text editor, you’ll see four columns
which are, from left to right: the count, the time in a specific trigger and anything that
triggers has called, total time in the named trigger only, and finally, the trigger name.

Profiler Script
You must compile the profiler application, using the following code.

{
/
***/
/* Message raw profiling data */
/**/
int i,j;
numeric n,m;
numeric sum_exc = 0.0;
char line[256];
list LL,L2,PL;

/**/
/* Read in the raw data */
/**/
list_mod(L2,1,parm.0);
list_mod(L2,1,”variable”);
list_mod(L2,1,” ‘”);
list_mod(L2,1,”I”);
list_mod(L2,1,”N”);
list_mod(L2,1,”N”);
list_mod(L2,1,”C”);

PL = list_open(L2,10000);

list_seek(PL,0);
for (i=list_rows(PL);i;i--) sum_exc = sum_exc + list_read(PL,2);

/**/
/* Calculate the percentages */
/**/
LL = list_open(“5 9 7 9 7 72”,0,”Count “
 “Inclusive times “
 “Exclusive times “
 “Trigger name
“
 “
“);
list_seek(PL,0);
for (i=list_rows(PL);i;i--) {
 list_mod(LL,1,list_curr(PL,0),
DesignVision Users Guide 105

Chapter 10 Debugging & Compiling DVapp Performance Tuning
 to_char(list_curr(PL,1),”9999.9999”),
 to_char(100.0*list_curr(PL,1)/sum_exc,”999.99%”),
 to_char(list_curr(PL,2),”9999.9999”),
 to_char(100.0*list_curr(PL,2)/sum_exc,”999.99%”),
 list_curr(PL,3));
 list_next(PL);
 }

/
***/
/* Setup option list */
/**/
L2 = list_open(“30”,0,”Profiling data for ‘” ^^ parm.0 ^^ “‘”,
 “Total time: ~” ^^ sum_exc ^^ “ seconds”,””,
 “Options”);
list_mod(L2,1,”Sort by inclusive times”);
list_mod(L2,1,”Sort by exclusive times”);
list_mod(L2,1,”Sort by invocation count”);
list_mod(L2,1,”Sort by name”);
list_mod(L2,1,”View list”);
list_mod(L2,1,”File list”);
list_mod(L2,1,”Quit”);
list_seek(L2,0);

/**/
/* Command loop */
/**/
while (true) {
 list_view(L2,0); i = list_pos(L2);
 if (i == (list_rows(L2)-1)) break;
 if (i == 0) list_sort(LL,1,!confirm(“Sort
order”,”Ascending”,true));
 else if (i == 1) list_sort(LL,3,!confirm(“Sort
order”,”Ascending”,true));
 else if (i == 2) list_sort(LL,0,!confirm(“Sort
order”,”Ascending”,true));
 else if (i == 3) list_sort(LL,5,!confirm(“Sort
order”,”Ascending”,true));
 else if (i == 4) { list_seek(LL,0); list_view(LL,0); }
 else if (i == 5) { line = prompt(“Enter filename ==> “);
 if (line != NULL) list_file(LL,line,”a”); }
 }
}

DesignVision Users Guide 106

DesignVision Users Guide

AppendixA

Data Dictionary

The starting point for implementing the DVdd is the DVdd itself.

The following four tables provide the foundation:

• TDD_CATEGORY

• TDD_DOMAIN

• TDD_LANGUAGE

• TDD_TRIGGER

Entries in all other DVdd tables eventually rely on definitions in one or more of these four tables.
Since these four tables are the foundation, or root, of the DVdd, they must have entries before
you can make entries in the other DVdd tables. The DVdd management applications enforce this
relationship.

Every DVdd table has a version stamp in its first column that represents the current version with
a number greater than one. Old versions have negative numbers. You can find the dates that
correspond to each version in the table TDD_VERSION.

TDD_CATEGORY
This table lets you categorize DVdd entries by application group and project.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

CAT_NAME _TDD_IDENT C 30 N Name

CAT_TYPE _TDD_CODE I 2 N Values
0 Project
1 Application Group

CAT_DESC _TDD_DESC_SHORT C 40 Y Brief description.

The following tables depend on TDD_CATEGORY:

• TDD_CODE.COD_CAT_PROJECT

• TDD_FORMAT.FMT_CAT_GROUPID

• TDD_FORMAT.FMT_CAT_PROJECT

• TDD_HELP.HLP_CAT_PROJECT

• TDD_LABEL.LAB_CAT_GROUPID

• TDD_LABEL.LAB_CAT_PROJECT

• TDD_TEXT.TXT_CAT_GROUPID

• TDD_TEXT.TXT_CAT_PROJECT
DesignVision Users Guide 107

Appendix A Data Dictionary
TDD_DOMAIN
You must specify all object datatypes in the TDD_DOMAIN table. Modifying a datatype
description in this table ensures that all instances of that object are changed.

For example, the LAST_NAME domain might have originally been defined as char(20) but now
must be changed to char(30). You simply make the change in the TDD_DOMAIN table and
regenerate your applications and tables.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION 1 4 N Version stamp.

DOM_NAME _TDD_IDENT C 30 N Name

DOM_DTY _TDD_CODE I 2 N Values:
0 Integer
1 Character
2 Numeric
12 Datetime

DOM_LEN _TDD_LEN I 2 N Length of the data. If scale is
given, length is the same as
precision.

DOM_SCALE _TDD_LEN I 2 Y Scale of a number (decimal).

The following tables depend on TDD_DOMAIN:

• TDD_COLUMN.COL_DOM_NAME

• TDD_IFIELD.IFL_DOM_NAME

TDD_LANGUAGE
All displayed text has a language code associated with it. You store the codes, which match the
ISO definitions, in the TDD_LANGUAGE table. You convert from one language to another by
simply changing the language code in this table and regenerating your applications.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

LAN_NAME _TDD_ISOLAN C 3 N Language code in 3-
character ISO format.

LAN_DESC _TDD_DESC_SHORT C 40 y Brief description.

The following tables depend on TDD_LANGUAGE:

• TDD_CODE.COD_LAN_NAME

• TDD_FORMAT.FMT_LAN_NAME

• TDD_HELP.HLP_LAN_NAME

• TDD_LABEL.LAB_LAN_NAME

• TDD_TEXT.TXT_LAN_NAME
DesignVision Users Guide 108

Appendix A Data Dictionary
TDD_TRIGGER
 The TDD_TRIGGER table stores all your trigger code.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

TRG_NAME _TDD_IDENT C 30 N Name

TRG_TYPE I 2 N Values:
20 Action (generic)
10 Main
17 Init (Window)
18 Query (Window)
19 Record (Window)
21 Table (Window)
15 Update (Window)
11 Window (Window)
16 Validate
12 Screen field
7 Report field

TRG_SEQ _TDD_SEQ I 2 N Orders (sequences) the
data correctly.

TRG_DATA _TDD_TEXT_LONG C 240 Y Text data.

The following tables depend on TDD_TRIGGER:

• TDD_EVENT.EVT_TRG_NAME

• TDD_LIST.LIS_TRG_NAME

• TDD_RFIELD.RFL_TRG_NAME

• TDD_SFIELD.SFL_TRG_NAME

• TDD_SFIELD.SFL_VAL_TRG

• TDD_TRIGGERSET.TRS_INIT

• TDD_TRIGGERSET.TRS_MAIN

• TDD_TRIGGERSET.TRS_QUERY

• TDD_TRIGGERSET.TRS_RECORD

• TDD_TRIGGERSET.TRS_UPDATE

• TDD_TRIGGERSET.TRS_WINDOW
DesignVision Users Guide 109

Appendix A Data Dictionary
TDD_CODE
All codes are defined in TDD_CODE. For example, a Yes/No code could be defined as follows:

 COD
 COD LAN COD COD COD COD
 NAME NAME SEQ DEFNAME DESC VALUE
 TDD_YESNO ENG 0 TDD_NO No 0
 TDD_YESNO ENG 1 TDD_YES Yes 1

From the menu, select TOOLS > Generate ’tdd.h’ file to write these definitions to a TRIMpl- and
C- compatible header file.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

COD_NAME _TDD_IDENT C 30 N Name.

COD_CAT_PROJECT _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Project ID. (e.g.,
customer ID)

COD_LAN_NAME _TDD_ISOLAN C 3 N TDD_LANGUAGE
LAN_NAME

COD_SEQ _TDD_SEQ I 2 N Orders
(sequences) the
data correctly.

COD_DEFNAME _TDD_IDENT I 2 N #define name.
Can be used in
TRIMpl and C
programs.

COD_DESC _TDD_DESC_MEDIUM C 80 N Brief description.

COD_VALUE _TDD_CODE I 2 Y Code value.

The following tables depend on TDD_CODE:

• TDD_CHOICE.CHO_COD_NAME

• TDD_FLAG.FLG_COD_NAME
DesignVision Users Guide 110

Appendix A Data Dictionary
TDD_FORMAT
TDD_FORMAT stores screen and report field masks. For example, if after you build your
applications you decide to make the Name field wider on the screen, you simply change its
definition in TDD_FORMAT and regenerate your applications.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

FMT_NAME _TDD_IDENT C 30 N Name.

FMT_CAT_PROJECT _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Project ID.(e.g.,
customer ID)

FMT_CAT_GROUPID _TDD_IDENT C 30 TDD_CATEGORY
CAT_NAME

Group ID. (Groups
applications within a
project.)

FMT_LAN_NAME _TDD_ISOLAN C 3 N TDD_LANGUAGE
.LAN_NAME

FMT_DEFNAME _TDD_IDENT C 30 Y #define. Can be used
in TRIMpl and C
programs.

FMT_DATA _TDD_FORMAT C 60 N Format string.

The following tables depend on TDD_FORMAT:

• TDD_EDIT.EDT_FMT_NAME

• TDD_RFIELD.RFL_FMT_NAME
DesignVision Users Guide 111

Appendix A Data Dictionary
TDD_HELP
All help descriptions are stored in TDD_HELP. With the HLP_LAN_NAME column, you can change
your help dialogs and documentation to different languages without modifying your
applications. Using the following TRIMpl code, you can easily create field-level help:

/**/
/* Display help (if any) on a field */
/* parm.0 - field name */
/* parm.1 - field help name */
/**/
{
list LL,L2;
if (!trap({ LL = list_open("select HLP_DATA,HLP_SEQ "
 "from TDD_HELP "
 "where TDD_VERSION > 0 and "
 "HLP_LAN_NAME = &g.language and "
 "HLP_NAME = &parm.1 "
 "order by HLP_SEQ",1000,"Help on "^^parm.0); })) {
 L2 = NULL;
 while (list_rows(LL)) { list_mod(L2,1,list_curr(LL,0));
list_mod(LL,0); }
 if (list_rows(L2)) {
 edit_text(L2,0,-2,-2,min(16,list_rows(L2)),80,false);
 return;
 }
 }
confirm("Help on ’" ^^ parm.0 ^^ "’",
 "No help available",confirm_ok,confirm_info,confirm_okonly);
}

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

HLP_NAME _TDD_IDENT C 30 N Name.

HLP_CAT_PROJECT _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Project ID. For VARS
this might be the
customer ID.

HLP_LAN_NAME _TDD_ISOLAN C 3 N TDD_LANGUAGE
LAN_NAME

HLP_SEQ _TDD_SEQ I 2 N Orders (sequences) the
data correctly.

HLP_DATA _TDD_TEXT C 80 Y Text data.

The following tables depend on TDD_HELP:

• TDD_COLUMN.COL_HLP_NAME

• TDD_IFIELD.IFL_HLP_NAME

• TDD_TABLE.TAB_HLP_NAME
DesignVision Users Guide 112

Appendix A Data Dictionary
TDD_LABEL
This table manages screen and report field labels. Note the LAB_LAN_NAME column, which
simplifies localization efforts for applications and reports. This table also stores logical screen font
information.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

LAB_NAME _TDD_IDENT C 30 N Name.

LAB_CAT_PROJECT _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Project ID. For VARS
this might be the
customer ID.

LAB_LAN_NAME _TDD_ISOLAN C 3 N TDD_CATEGORY
CAT_NAME

Group ID. Used to
group applications
within a project.

LAB_SEQ _TDD_SEQ I 2 N TDD_LANGUAGE
LAN_NAME

Orders (sequences) the
data correctly.

LAB_FONT _TDD_CODE I 2 N The logical font.
Values:
0 System
1 Fixed
2 ANSI
3 Field
4 Label
5 Button

LAB_TEXT _TDD_TEXT C 80 N Text data.

The following tables depend on TDD_LABEL:

• TDD_RFIELD.RFL_LAB_NAME

• TDD_SFIELD.SFL_LAB_NAME
DesignVision Users Guide 113

Appendix A Data Dictionary
TDD_TEXT
This table stores screen, button, and menu, and text items.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

TXT_NAME _TDD_IDENT C 30 N Name.

TXT_CAT_PROJECT _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Project ID. For VARS
this might be the
customer ID.

TXT_CAT_GROUPID _TDD_IDENT C 30 Y TDD_CATEGORY
CAT_NAME

Group ID. Used to
group applications
within a project.

TXT_LAN_NAME _TDD_ISOLAN C 3 N TDD_LANGUAGE
LAN_NAME

TXT_DATA _TDD_TEXT C 80 Y Text data.

The following tables depend on TDD_TEXT:

• TDD_ACTION.ACT_TXT_NAME

• TDD_MENU.MEN_TXT_NAME

TDD_EVENT
The TDD_EVENT table associates an action name with an actual trigger. It also marks the trigger
as pre- or post-validation.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

EVT_NAME _TDD_IDENT C 30 N Name.

EVT_PREVAL _TDD_BOOLEAN I 2 N If true (nonzero), this event
is performed before the field
validation trigger (if one
exists) executes.
Values:
0 No
1 Yes

EVT_TRG_NAME _TDD_IDENT C 30 TDD_TRIGGER
TRG_NAME

The table TDD_ACTION.ACT_EVT_NAME depends on TDD_EVENT.
DesignVision Users Guide 114

Appendix A Data Dictionary
TDD_LIST
If a screen field is actually a list object, then its trigger name is stored in TDD_LIST.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

LIS_NAME _TDD_IDENT C 30 N Name.

LIS_LEN _TDD_LEN I 2 N

LIS_TRG_NAME _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

The table TDD_SFIELD.SFL_LIS_NAME depends on TDD_LIST.

TDD_RFIELD
TDD_RFIELD stores the report field definitions — justification, display format, label, and trigger
names. Storing the format name here makes it simple to modify a field’s report display in one
place and have that reflected in all reports.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

RFL_NAME _TDD_IDENT C 30 N Name.

RFL_JUST _TDD_CODE I 2 N Justification.
Values:
76 Left
67 Center
82 Right

RFL_FMT_NAME _TDD_IDENT C 30 N TDD_FORMAT
FMT_NAME

RFL_LAB_NAME _TDD_IDENT C 30 Y TDD_LABEL
LAB_NAME

RFL_TRG_NAME _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

The table TDD_FIELD.FLD_RFL_NAME depends on TDD_RFIELD:
DesignVision Users Guide 115

Appendix A Data Dictionary
TDD_CHOICE
Radio buttons and single-choice lists are described here. In addition to defining the code value to
use, TDD_CHOICE also defines the default value to set for new records.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

CHO_NAME _TDD_IDENT C 30 N Name.

CHO_COD_NAME _TDD_IDENT C 30 N TDD_CODE
COD_NAME

CHO_DFLT _TDD_CODE I 2 N Default value to use
when creating a new
record.

The table TDD_GROUP.GRP_CHO_NAME depends on TDD_CHOICE.

TDD_FLAG
This table describes checkboxes and multi-choice lists. In addition to defining the code value to
use, TDD_FLAG also defines the default value to set for new records.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

FLG_NAME _TDD_IDENT C 30 N Name.

FLG_COD_NAME _TDD_IDENT C 30 N TDD_CODE
COD_NAME

FLG_DFLT _TDD_CODE I 2 N Default value to use
when creating a new
record.

The table TDD_GROUP.GRP_FLG_NAME depends on TDD_FLAG.
DesignVision Users Guide 116

Appendix A Data Dictionary
TDD_ACTION
Buttons, menu items, and predefined events all use the TDD_ACTION table to define their label
text and event. A Quit button and a Quit menu item can point to the same TDD_ACTION, thus
sharing the same code and behavior.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

ACT_NAME _TDD_IDENT C 30 N Name.

ACT_AID _TDD_INTEGER I 4 N Additional Action ID.*

ACT_TXT_NAME _TDD_IDENT C 30 N TDD_TEXT
TXT_NAME

ACT_EVT_NAME _TDD_IDENT C 30 N TDD_EVENT
EVT_NAME

*The pre-defined variable g.aid is set to this value after a [raw_]input() call. If the value is (-
1) G.AID is set to G.KEY. On a FORWARD EVENT and if the value is (-1) then G.AID is set to
G.AUX.

The following tables depend on TDD_ACTION:

• TDD_BUTTON.BUT_ACT_NAME

• TDD_MENU.MEN_ACT_NAME

• TDD_PEVENT.PEV_ACT_NAME
DesignVision Users Guide 117

Appendix A Data Dictionary
TDD_EDIT
This table describes edit fields, which allow end users to type in values. The EDT_FMT_NAME
column controls the display format and the EDT_ATTR column controls the input behavior.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

EDT_NAME _TDD_IDENT C 30 N Name.

EDT_ATTR _TDD_ATTR I 4 N Attributes. To combine
several attributes binary
OR the individual
attributes.
Values:
2 Fixed
8 Uppercase
16 No echo
256 Auto reset
4096 Autoskip
6384 Raw input

EDT_JUST _TDD_CODE I 2 N Justification.
Values:
76 Left
67 Center
82 Right

EDT_LEN _TDD_LEN I 2 N Display length. If 0, use
the format mask.

EDT_FMT_NAME _TDD_IDENT C 30 N TDD_FORMAT
FMT_NAME

The table TDD_SFIELD.SFL_EDT_NAME depends on TDD_EDIT.
DesignVision Users Guide 118

Appendix A Data Dictionary
TDD_TABLE
Database table descriptions reside in TDD_TABLE. Along with table name and description, you
can store an optional TAB_EDITAPP, which is called from the DVdd to edit the table.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

TAB_NAME _TDD_SQLID C 18 N SQL Identifier.

TAB_EDITAPP _TDD_TEXT C 80 Y Table-editing
application. This .run
file. If no name is given
the default grid editor
application is used.

TAB_DESC _TDD_DESC_LONG C 240 Y Brief description.

TAB_HLP_NAME _TDD_IDENT C 30 Y TDD_HELP
HLP_NAME

The following tables depend on TDD_TABLE:

• TDD_COLUMN.COL_TAB_NAME

• TDD_FORKEY.FKY_TAB_MASTER

• TDD_FORKEY.FKY_TAB_SLAVE

• TDD_INDEX.IDX_TAB_NAME

• TDD_LOV.LOV_TAB_NAME

TDD_STEXT
This table defines screen text items. In addition to the text name, you also define the font used to
display the text.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

STX_NAME _TDD_IDENT C 30 N Name.

STX_FONT _TDD_CODE I 2 N The logical font.
Values can be:
0 System
1 Fixed
2 ANSI
3 Field
4 Label
5 Button

STX_TXT_NAME _TDD_IDENT C 30 N TDD_TEXT
TXT_NAME

No tables depend on this table.
DesignVision Users Guide 119

Appendix A Data Dictionary
TDD_MENU
TDD_MENU stores menu definitions. Because this table is very complicated and it is easy to
make mistakes that render your menus unusable, you should always use DVmenu to create and
modify your menu definitions. DVmenu can be run either as a stand-alone product or from
within DVapp.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

MEN_NAME _TDD_IDENT C 30 N Name.

MEN_SNAME _TDD_IDENT C 30 Y Submenu name.

MEN_SEQ _TDD_SEQ I 2 N Orders (sequences)
the data correctly.

MEN_ACT_NAME _TDD_IDENT C 30 Y TDD_ACTION
ACT_NAME

MEN_MEN_SNAME _TDD_IDENT C 30 Y TDD_MENU
MEN_SNAME

Submenu name.

MEN_TXT_NAME _TDD_IDENT C 30 Y TDD_TEXT
TXT_NAME

The following table depends on TDD_MENU:

• TDD_MENU.MEN_MEN_SNAME

• TDD_TRIGGERSET.TRS_MEN_NAME

TDD_BUTTON
This table defines action buttons. You can specify an optional bitmap to display in the button,
otherwise the generator uses the underlying BUT_ACT_NAME’s TDD_ACTION label.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

BUT_NAME _TDD_IDENT C 30 N Name.

BUT_ACT_NAME _TDD_IDENT C 30 N TDD_ACTION
ACT_NAME

BUT_BITMAP _TDD_IDENT C 30 Y If specified, the button is
displayed with the
named bitmap. If NULL,
then the label from the
underlying action is
used.

No tables depend on TDD_BUTTON.
DesignVision Users Guide 120

Appendix A Data Dictionary
TDD_GROUP
Checkboxes, radio buttons, and lists are all group objects. In the TDD_GROUP table, you specify
object type by using GRP_ATTR flags and GRP_FLG_NAME and GRP_CHO_NAME fields. For
example, if GRP_FLG_NAME is set, then the field is a multi-choice field. If GRP_ATTR has the List
bit on, then it is a multi-choice list. Add the drop-down bit and it is now a drop-down multi-
choice list.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

GRP_NAME _TDD_IDENT C 30 N Name.

GRP_ATTR _TDD_ATTR I 4 N Attributes. To combine
several attributes binary OR
the individual attributes.
Values:
1 Button
2 List
8 Drop Down
16 Horizontal

GRP_FLG_NAME _TDD_IDENT C 30 Y TDD_FLAG
FLG_NAME

GRP_CHO_NAME _TDD_IDENT C 30 Y TDD_CHOICE
CHO_NAME

The table TDD_SFIELD.SFL_GRP_NAME depends on TDD_GROUP.

TDD_INDEX
Define your database indexes here.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

IDX_NAME _TDD_SQLID C 18 N SQL Identifier. Following the
ANSI standard, this field is
18 characters long to ensure
safe portability.

IDX_TAB_NAME _TDD_SQLID C 18 N TDD_TABLE
TAB_NAME

Table name.

IDX_UNIQUE _TDD_BOOLEAN I 2 N Values:
0 No
1 Yes

The table TDD_XCOLUMN.XCO_IDX_NAME depends on TDD_INDEX.
DesignVision Users Guide 121

Appendix A Data Dictionary
TDD_SFIELD
This table is the main DVdd table for screen fields. It stores screen field attributes and user-
defined attributes as well as the names of the label, field, and validation triggers, and edit, list,
and group names. If entries in more than one of the edit, list, and group columns appear, users
are prompted to pick one.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

SFL_NAME _TDD_IDENT C 30 N Name.

SFL_ATTR _TDD_ATTR I 4 N Attributes. To combine
several attributes binary OR
the individual attributes.
Values:
0 - none
1 Calculate
2 Primary
4 Initialize

SFL_UATTR _TDD_ATTR I 4 N User-defined attributes.
Values:
0 - none
1 Calculate
2 Primary
4 Initialize

SFL_EDT_NAME _TDD_IDENT C 30 Y TDD_EDIT
EDT_NAME

SFL_LIS_NAME _TDD_IDENT C 30 Y TDD_LIST
LIS_NAME

SFL_GRP_NAME _TDD_IDENT C 30 Y TDD_GROUP
GRP_NAME

SFL_LAB_NAME _TDD_IDENT C 30 Y TDD_LABEL
LAB_NAME

SFL_VAL_TRG _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

SFL_TRG_NAME _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

The table TDD_FIELD.FLD_SFL_NAME depends on TDD_SFIELD.
DesignVision Users Guide 122

Appendix A Data Dictionary
TDD_TRIGGERSET
Use the TDD_TRIGGERSET table to create sets of triggers. DVapp windows have several triggers,
such as window, update, record, and table. This table groups these triggers, creating templates
for window types. For example, a user may define a read-only, an insert-only, and an update
triggerset. Then when someone creates a new window in an application, picking the correct
triggerset automatically associates the triggers with the desired behavior.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

TRS_NAME _TDD_IDENT C 30 N Name.

TRS_MEN_NAME _TDD_IDENT C 30 Y TDD_MENU
MEN_NAME

TRS_MAIN _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TRS_WINDOW _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TRS_UPDATE _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TRS_INIT _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TRS_QUERY _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TRS_RECORD _TDD_IDENT C 30 Y TDD_TRIGGER
TRG_NAME

TDD_PEVENT.PEV_TRS_NAME depends on TDD_TRIGGERSET.
DesignVision Users Guide 123

Appendix A Data Dictionary
TDD_PEVENT
The window and key events reside in TDD_PEVENT. Note the PEV_DEFNAME column which is
used to create TRIMpl- and C-compatible header files with the predefined event definitions.
DVapp applications use these files to find out what event has occurred.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

PEV_NAME _TDD_IDENT C 30 N Name.

PEV_TRS_NAME _TDD_IDENT C 30 Y TDD_TRIGGERSET
TRS_NAME

PEV_MODE _TDD_CODE I 2 N Values:
0 Record
1 Query

PEV_SEQ _TDD_SEQ I 2 N Orders (sequences) the
data correctly.

PEV_DEFNAME _TDD_IDENT C 30 Y #define name. Can be
used in TRIMpl and C
programs.

PEV_ACT_NAME _TDD_IDENT C 30 N TDD_ACTION
ACT_NAME.

No tables depend on TDD_PEVENT.

TDD_FIELD
TDD_FIELD defines the screen and report field names for a column or independent field.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

FLD_NAME _TDD_IDENT C 30 N Name.

FLD_SFL_NAME _TDD_IDENT C 30 Y TDD_SFIELD
SFL_NAME

FLD_RFL_NAME _TDD_IDENT C 30 Y TDD_RFIELD
RFL_NAME

The following table depends on TDD_FIELD:

• TDD_COLUMN.COL_FLD_NAME

• TDD_IFIELD.IFL_FLD_NAME
DesignVision Users Guide 124

Appendix A Data Dictionary
TDD_COLUMN
Use this table to define your database columns.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

COL_NAME _TDD_SQLID C 18 N SQL Identifier.

COL_TABL_NAME _TDD_SQLID C 18 N TDD_TABLE
TAB_NAME

SQL Identifier.

COL_SEQ _TDD_SEQ I 2 N Orders (sequences) the
data correctly.

COL_NULLS _TDD_BOOLEAN I 2 N Values:
0 No
1 Yes

COL_DOM_NAME _TDD_IDENT C 30 N TDD_DOMAIN
DOM_NAME

COL_FLD_NAME _TDD_IDENT C 30 Y TDD_FIELD
FLD_NAME

COL_HLP_NAME _TDD_IDENT C 30 Y TDD_HELP
HLP_NAME

The following tables depend on TDD_COLUMN:

• TDD_FORKEY.FKY_COL_MASTER

• TDD_FORKEY.FKY_COL_SLAVE

• TDD_FORKEY.FKY_VCO_SLAVE

• TDD_LOV.LOV_COL_NAME

• TDD_XCOLUMN.XCO_COL_NAME

• TDD_XCOLUMN.XCO_TAB_NAME
DesignVision Users Guide 125

Appendix A Data Dictionary
TDD_IFIELD
Independent fields, fields that are not related to database table columns, are defined here.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

IFL_NAME _TDD_IDENT C 30 N Name.

IFL_DOM_NAME _TDD_IDENT C 30 N TDD_DOMAN
DOM_NAME

IFL_FLD_NAME _TDD_IDENT C 30 N TDD_FIELD
FLD_NAME

IFL_HLP_NAME _TDD_IDENT C 30 Y TDD_HELP
HLP_NAME

No tables depend on TDD_IFIELD.
DesignVision Users Guide 126

Appendix A Data Dictionary
TDD_FORKEY
The foreign key table is used by most of the DVdd utility programs to keep the internal DVdd
structures correct. It is also used by DVapp to perform automatic foreign key checking.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

FKY_TAB_MASTER _TDD_SQLID C 18 N TDD_TABLE
TAB_NAME

Table name.

FKY_COL_MASTER _TDD_SQLID C 18 N TDD_COLUMN
COL_NAME

Column name.

FKY_VAL_MASTER _TDD_CODE I 2 Y Additional value predicate.
If not NULL,
FKY_VCO_SLAVE
indicates the column to
which the value should be
equal.

FKY_TAB_SLAVE _TDD_SQLID C 18 N TDD_TABLE
TAB_NAME

Table name.

FKY_COL_SLAVE _TDD_SQLID C 18 N TDD_COLUMN
COL_NAME

Column name.

FKY_VCO_SLAVE _TDD_SQLID C 18 Y TDD_COLUMN
COL_NAME

Column name.

FLY_LOV_DISPCOL _TDD_COLUMN I 2 Y Column to display during
default LOV processing.
NULL indicates all
columns. A value greater
than the number of columns
in the LOV table shows the
return column. Otherwise,
the column indicated is
shown.

No tables depend on TDD_FORKEY.
DesignVision Users Guide 127

Appendix A Data Dictionary
TDD_LOV
List of values definitions are stored in TDD_LOV. You have control over which columns appear in
the LOV popup as well as any additional WHERE and ORDER BY clauses.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

LOV_TAB_NAME _TDD_SQLID C 18 N TDD_TABLE
TAB_NAME

Table name.

LOV_COL_NAME _TDD_SQLID C 18 N Column name.

LOV_SEQ _TDD_SEQ I 2 N TDD_COLUMN
COL_NAME

Orders (sequences)
the data correctly.

LOV_SEL_COLUMNS _TDD_TEXT_LONG C 240 Y Specifies the columns
(in a comma-
separated list) to
display in the list of
values popup. If not
specified all columns
display.

LOV_SEL_WHERE _TDD_TEXT_LONG C 240 Y Optional WHERE
clause. The WHERE
is added
automatically.

LOV_SEL_ORDER _TDD_TEXT_LONG C 240 Y Optional ORDER BY
clause. The ORDER
BY is added
automatically.

No tables depend on the TDD_LOV table.
DesignVision Users Guide 128

Appendix A Data Dictionary
TDD_XCOLUMN
TDD_XCOLUMN stores the index columns used to build indexes.

Name Domain Dty Len Nulls Foreign Key
(Table & Col) Description

TDD_VERSION _TDD_VERSION I 4 N Version stamp.

XCO_IDX_NAME _TDD_SQLID C 18 N TDD_INDEX
IDX_NAME

XCO_TAB_NAME _TDD_SQLID C 18 N TDD_COLUMN
COL_TAB_NAME

XCO_COL_NAME _TDD_SQLID C 18 N TDD_COLUMN
COL_NAME

XCO_SEQ _TDD_SEQ I 2 N Orders (sequences)
the data correctly.

No tables depend on TDD_XCOLUMN
DesignVision Users Guide 129

DesignVision Users Guide

Appendix B

Intialization Files
TRIMreport User Guide

Most of the Trifox tools and sub-systems read configuration and initialization data from
special .ini files. These files typically have the same format:

option value

The option is the name of the initialization option, setting name, or parameter. Lines with
un-recognized options are ignored.

Value is the value of the option. Depending on option the value can be a number, a yes/no,
or a text string. The value can also represent one or more environment variables
expressed as:

$(name)

The environment variable(s) are expanded before the value is evaluated.

The files support text strings as values, but they must be enclosed in double quotes ("),
SQL-style, if blanks or quotes are part of the string. If no ending quote mark is provided,
the string is terminated with a \n.

If an option is not found in the file, then the default value is used.

The various relevant .ini files are described in detail in the following section(s).

Edit them using any ascii-based text editor. If you are reinstalling a product, we
recommend you edit a ‘‘clean’’ copy of each .ini file, rather than modifying an existing
one from your environment.

VORTEXclient applications all look for necessary initialization parameters in the
following priority:

1. Current working directory, regardless of any env_var setting.

2. The lib subdirectory under $TRIM_HOME, which is specified according to operating
system rules.

dv.ini
dv.ini is used by DesignVision.

auto_start

Type yes/no

Default no

Description This setting overrides the automatic start and displays the Slave Start
Dialog box when you start DV or TRIM with the -i option.
DesignVision Users Guide 130

Appendix B Intialization Files dv.ini
busy_alarm

Type number

Default 0

Description Number of seconds until an alarm goes off.

The alarm is initialized by the first [raw_]input() function called. It is
always turned off before each [raw_]input() and turned back on
when returning from input, so it is on during actual TRIMpl processing.

The TRIMpl function alarm(), when used, overrides this setting.

Example The following specifies that something extraordinary might happen in
five minutes (300 seconds)

busy_alarm 300

cgi_timeout

Type number

Default 300

Description Specifies the maximum amount of seconds to wait for a cgi response.

Example The following specifies that the maximum wait is 10 minutes:
cgi_timeout 600

columns

Type number

Default 64

Description Specifies the maximum number of columns allowed in query result.

Example The following specifies that the maximum number of columns
allowed in a query result is 128:

columns 128

db_cursors

Example The following specifies that the Slave Start Dialog box should appear
when the DesignVision application starts:

auto_start no

Type number

Default 32

Description Number of database cursors to allocate for each database connection.
TRIMreport User Guide 131

Appendix B Intialization Files dv.ini
 db_cursor_cache

Type yes/no

Default yes

Description Cache database cursors.

Example The following specifies that database cursors should not be cached:
db_cursor_cache no

db_message_size

Type number

Default 128

Description Length (in characters) of the database error message buffer.

Example The following specifies that the buffer is 256 characters long:
db_message_size 256

db_trim_blanks

Type yes/no

Default yes

Description Trim trailing blanks from fetched database CHAR data.

Example The following specifies that trailing blanks are trimmed:
db_trim_blanks yes

decimal_key

Type string

Default Codepage or keyboard

Description String to return when the numeric keypad decimal separator key is
pressed.

Example The following specifies that “.” must be returned regardless of the
current codepage or keyboard:

decimal_key .

Example The following specifies that 32 database cursors are allocated for each
database connection:

db_cursors 32
TRIMreport User Guide 132

Appendix B Intialization Files dv.ini
dynamic_cursors

Type number

Default 0

Description Sets the number of dynamic cursors to allocate. Dynamic cursors are non-
constant SQL statements, eg. concatenated strings, and are typically not
cached. If the number of dynamic_cursors is exceeded, then those
statements will not be cached which is the default action.

Example The following specifies that a maximum of 128 dynamic cursors will be
allocated:

dynamic_cursors 128

env_vars

Type text

Default non

Description A comma separated list of environment variables that the DV thin client
sends to the application server. The application server, in turn, sets the
variables as appropriate when it starts the application. The values in this
list are operating system and application-specific. They can contains
variables for multiple operating systems.

Example The following sets TRIM_HOME on a Unix machine and a value called
CIS.INI on an NT machine:

TRIM_HOME=/usr/rad,CIS.INI=c:\proj\lib\cis.ini

fetch_buffer_size

Type number

Default 4096

Description Database fetch buffer size (in bytes).

Example The following specifies that the fetch buffer is 2048 bytes large:
fetch_buffer_size 2048

fnc_path

Type text

Default none

Description Specifies the location of *.fnc files during generation. The first
character defines the path “delimeter” for the keyword definition.
TRIMreport User Guide 133

Appendix B Intialization Files dv.ini
heap_block_size

Type number

Default 1008

Description Minimum heap block size (in bytes) to allocate for the DesignVision
session.

Example The following specifies a heap block at least 504 bytes large:
heap_block_size 504

hostname

Type text

Default none

Description The thin client uses this option to identify the application server, either
by IP address or by machine name.

Example The following specifies the hostname:
hostname mynt

html_listload_hide

Type number

Default 100

Description If a display list has more than this number of rows, then it is hidden
while all the rows are loaded. This eliminates annoying flicker during
browser list loading.

Example The following specifies a maximum list size of 200 rows:
html_listload_hide 200

html_min_fld_width

Type number

Default none

Description The minimum display width for a field.

Example The following specifies a minimum width of 5 cells:
html_min_fld_width 5

include_path

Example The following specifies that *.fnc files are located in the current
working directory or the subdirectory lib specified in TRIM_HOME:

fnc_path ;.; $(TRIM_HOME)/lib

Type text
TRIMreport User Guide 134

Appendix B Intialization Files dv.ini
list_view_max_width

Type number

Default 1000

Description Width of list_view in characters, 80 - 8000. If the list is wider, three dots
“...” will be appended to the rows.

Example The following specifies that the list_view width is limited to 128
characters:

list_view_max_width 128

logical_cursors

Type number

Default 128

Description Number of logical cursors to allocate per database connection.

Example The following specifies that 56 logical cursors are allocated for the
application:

logical_cursors 56

message_file

Type text

Default trim.msg or dv.msg

Description Lets you specify your own message file.

Example The following specifies that messages are in a subdirectory, lib, in the
TRIM_HOME directory:

message_file $(TRIM_HOME)/lib/dv.msg

message_server

Default none

Description Specifies the location of #include files during generation. The first
character defines the path “delimeter” for the keyword definition.

Example The following specifies that #include files are located in the
c:\trim\include and d:\myincludes directories:

include_path ;c:\trim\include;d:\myincludes

Type text

Default none
TRIMreport User Guide 135

Appendix B Intialization Files dv.ini
mux_default_db_id

Type number

Default 0

Description Specifies the database when signing up with VORTEXaccelerator/
VORTEXmonitor. Actual slaves may override the setting if they are
different. See trim.h for values.

Example The following specifies that Rdb is the default database
mux_default_db_id 1

packetsize

Type number

Default 8192

Description Specifies the network packet size as well as the size of the send buffers on
each side of the connection. Sends are accumulated and the buffer is
flushed when the contents reach the limit, or if it is not full, a read
triggers a send. This option can have a significant impact on network
performance by keeping traffic efficient.

Example The following specifies that the buffers should flush when they reach
4096 bytes:

packetsize 4096

parameters

Type text

Default none

Description The thin client passes the items specified in this option to the application
server, which uses them for the application associated with the thin
client. The option can contain any number or type of paramters; it is
entirely application-dependent.

Example The following specifies the database connect string for the application:
parameters net:niklas/back

Description This parameter identifies the name of the Trifox message executable. This
executable logs all messages between the thin client and application
server when the client is run in trace mode.

Example The following specifies that the executable dvmsg32.exe logs messages.
message_server dvmsg32.exe
TRIMreport User Guide 136

Appendix B Intialization Files dv.ini
port

Type number

Default none

Description Port defines the vtxnet service port and overrides the value specified in
the operating system’s service file, if defined.

Example The following specifies a connection on port 1958:

port 1958

program

Type text

Default none

Description The thin client uses this option to identify the application that the
application server should start.

Example The following specifies that the server start an application called /usr2/
bin/trimrun.g2s:

program /usr2/bin/trimrun.g2s

run_path

Type text

Default none

Description Where to look for run files. The first character identifies the path
delimeter.

Example The following indicates that programs can be in either c:\trifox or
e:\bin:

run_path ;c:\trifox;e:\bin

shmem_seg_size

Type number

Default 64

Description Minimum shared segment size to allocate (in kilobytes).

Example The following specifies that the shared segment size is never less than
128:

shmem_seg_size 128

sql_strip_comments

Type yes/no

Default yes
TRIMreport User Guide 137

Appendix B Intialization Files dv.ini
sql_xlate_file

Type string

Default none

Description The name of a file that contains the SQL translations, or function
mappings.

Example The following, from a file called db2.fms (DB2 function mapping specs)
specifies that DECODE replaces a string that begins CASE …:
DECODE CASE WHEN $0=$1 THEN $2 #2[WHEN $0=$3 THEN $4]ELSE ~0
END

stack_size

Type number

Default 8000

Description This defines the amount of local variable stack in bytes

Example The following defines the local variable stack size to 16000 bytes:
stack_size 16000

trap_intern_errors

Type yes/no

Default no

Description Controls whether or not internal errors can be caught by the trap() function.

Example The following specifies that internal errors can be trapped:
trap_intern_errors yes

uppercase

Type yes/no

Default yes

Description Sets case for all identifiers.

Example The following specifies that identifiers are not case-sensitive:
uppercase No

uppercase_sql

Description Controls whether or not SQL comments are removed from constant SQL
statements. This allows Oracle hints to be passed to the driver.

Example The following specifies that SQL comments are not to be stripped:
sql_strip_comments no

Type yes/no
TRIMreport User Guide 138

Appendix B Intialization Files dv.ini
working_directory

Type text

Default none

Description Specifies the default working directory for the host program.

Example The following specifies that the host program’s default working directory
is /usr/bin/work:

working_directory /usr/bin/work

xaml_cell_height

Type numeric

Default none

Description Specifies the character cell height.

Example The following specifies that the character cell height is 23 pixels:
xaml_cell_height 23

xaml_cell_width

Type numeric

Default none

Description Specifies the character cell width.

Example The following specifies that the character cell width is 10 pixels:
xaml_cell_width 10

xaml_fld_add_width

Default yes

Description Specifies whether SQL identifiers in constant statements are forced to be
uppercase.

Example The following, required for Sybase databases which are case-sensitive,
specifies that identifiers on constant statements are not automatically
made uppercase:

uppercase_sql No

Type numeric

Default none
TRIMreport User Guide 139

Appendix B Intialization Files dv.ini
xaml_fld_max_margin

Type numeric

Default none

Description Specifies the extra pixels to add to each character in fields that are less
than xaml_fld_max_margin characters. The number of margin pixels
decreases based on the size of the field.

Example If xaml_fld_max_margin is set to 5

xaml_fld_max_margin 5

then in all character based fields less than 5 characters, the following
adjustments will occur:

1 char: 10 pixels (2 * 5)
2 chars: 8 pixels (2 * (5 - 1))
3 chars: 6 pixels (2 * (5 - 2))
4 chars: 4 pixels (2 * (5 - 3))

xaml_fld_min_width

Type numeric

Default none

Description Specifies the minum field width in pixels.

Example The following specifies that each field will have aminimum width of 20
pixels:

xaml_fld_min_width 20

xaml_font_n

Description Specifies the extra pixels to add to each field.

Example The following specifies that each field will have an extra 8 pixels of
width:

xaml_fld_add_width 8

Type text

Default The default fixed font is “ FontFamily=’Coutier New’”. None of the other
fonts have default values.
TRIMreport User Guide 140

Appendix B Intialization Files trim.ini
Example
The following is a sample dv.ini file on a Unix machine.

rem ---------- Trifox Virtual DV specifics
env_vars TRIM_HOME=/usr3/rad/dac,WRCIS.INI=/usr3/rad/dac/lib/wrcisth.ini
hostname 192.0.2.99
working_directory /usr3/rad/dac/cis
#default_file c:\daspects\lib\big4caps.vgd
message_server dvmsg.exe
program /usr2/trim/bin/trimrun.g2s
parameters start
packetsize 1024 -- network packet size (send/recv)
port 1958 -- port (overrides /etc/services)
rem -------------- TRIM generics
heap_block_size 1008 -- heap block size (in bytes)
fetch_buffer_size 4096 -- fetch buffer size (in bytes)
db_message_size 300 -- max DB message length
columns 256 -- max # of database columns
logical_cursors 512 -- max # of logical cursors
db_cursors 64 -- max # of DB cursors
db_cursor_cache yes -- cache the db cursors
db_trim_blanks yes -- trim trailing blanks from DB
uppercase yes -- true if to uppercase idents
uppercase_sql no -- true if to uppercase SQL stmts
include_path ;.;f:\trim\lib
run_path ;.;f:\trim\run

trim.ini
trim.ini is used by all the TRIM tools except TRIMqmr.

Description Specifies the font to use for

xaml_font_0 system
xaml_font_1 fixed
xaml_font_2 ansi
xaml_font_3 field
xaml_font_4 label
xaml_font_5 button

Example The following specifies the fonts to use for the different object types::

xaml_font_0 “FontFamily=’Arial Black’”
xaml_font_1 “FontFamily=’Courier New’”
xaml_font_3 “FontFamily=’Verdana’”
xaml_font_4 “FontFamily=’Trebuchet MS’”
xaml_font_5 “FontFamily=’Comic Sans MS’
FontSize=’12’”
TRIMreport User Guide 141

B Intialization Files trim.ini
columns

Type number

Default 64

Description Maximum number of columns allowed for the associated connect().

Example The following specifies that a query can contain no more than 24
columns:

columns 24

db_cursor_cache

Type yes/no

Default yes

Description Caches database cursors.

Example The following specifies that database cursors should not be cached:
db_cursor_cache no

db_cursors

Type number

Default 32

Description Number of database cursors to allocate for the associated connect().

Example The following specifies that 15 cursors are allocated for each database
connection:

db_cursors 15

db_message_size

Type number

Default 128

Description Length (in characters) of the database error message buffer.

Example The following specifies that the buffer is 256 characters long:
db_message_size 256

db_trim_blanks

Type yes/no

Default yes

Description Trim trailing blanks from fetched database CHAR data.

Example The following specifies that trailing blanks are trimmed:
db_trim_blanks yes

TRIMreport User Guide 142

B Intialization Files trim.ini
fetch_buffer_size

Type number

Default 2048

Description Database fetch buffer size (in bytes).

Example The following specifies a buffer 1024 bytes large:
fetch_buffer_size 1024

heap_block_size

Type number

Default 1008

Description Minimum heap block size (in bytes) to allocate for the DesignVision
session.

Example The following specifies a heap block at least 504 bytes large:
heap_block_size 504

include_path

Type text

Default none

Description Specifies the location of #include files during generation. The first
character defines the path“delimeter” for the keyword definition.

Example The following specifies that #include files are located in the locations
c:\trim\include and d:\myincludes:

include_path ;c:\trim\include;d:\myincludes

logical_cursors

Type number

Default 128

Description Number of logical cursors to allocate for the connection.

Example The following specifies that 56 logical cursors are allocated for the
connection:

logical_cursors 56

message_file

Type string

Default trim.msg or dv.msg

Description Lets you specify your own message file at runtime.
TRIMreport User Guide 143

B Intialization Files trim.ini
mux_default_db_id

Type number

Default 0

Description Specifies the database when signing up with VORTEXaccelerator. Actual
slaves may override the setting if they are different. See trim.h for
values.

Example The following specifies that Rdb is the default database:
mux_default_db_id 1

run_path

Type text

Default none

Description Where to look for run files. The first character identifies the path
delimeter.

Example The following indicates that programs can be in either c:\trifox or
e:\bin:

run_path ;c:\trifox;e:\bin

shmem_seg_size

Type number

Default 64

Description Minimum shared segment size to allocate (in kilobytes).

Example The following specifies that the shared segment size is never less than
128:

shmem_seg_size 128

sql_strip_comments

Type yes/no

Default yes

Description Controls whether or not SQL comments are removed from constant SQL
statements. This allows Oracle hints to be passed to the driver.

Example The following specifies that SQL comments are not to be stripped:
sql_strip_comments no

Example The following specifies that messages are in a subdirectory , lib, in the
TRIM_HOME directory:

message_file $(TRIM_HOME)/lib/trim.msg
TRIMreport User Guide 144

B Intialization Files trim.ini
sql_xlate_file

Type string

Default none

Description The name of a file that contains the SQL translations, or function
mappings.

Example The following, from a file called db2.fms (DB2 function mapping specs)
specifies that DECODE replaces a string that begins CASE …:
DECODE CASE WHEN $0=$1 THEN $2 #2[WHEN $0=$3 THEN $4]ELSE ~0 END

stack_size

Type number

Default 8000

Description This defines the amount of local variable stack in bytes

Example The following defines the local variable stack size to 16000 bytes:
stack_size 16000

uppercase

Type yes/no

Default yes

Description Indicates that all identifiers are case-sensitive.

Example The following specifies that identifiers are not case-sensitive:
uppercase No

uppercase_sql

Type yes/no

Default yes

Description Specifies whether SQL identifiers in constant statements are forced to be
upper case.

Example The following, required for Sybase databases which are case-sensitive,
specifies that identifiers on constant statements are not automatically
made upper case:

uppercase_sql No

Example
rem -------------- TRIM generics
heap_block_size 16000 -- heap block size (in bytes)
message_file $(TRIM_HOME)/lib/trim.msg
fetch_buffer_size 32768 -- fetch buffer size (in bytes)
stack_size 8000
TRIMreport User Guide 145

B Intialization Files trim.ini
db_message_size 300 -- max DB message length
columns 768 -- max # of database columns
logical_cursors 4096 -- max # of logical cursors
shmem_seg_size 128 -- min shared seg size (in Kbytes)
db_cursors 64 -- max # of DB cursors
db_cursor_cache yes -- cache the db cursors
db_trim_blanks yes -- trim trailing blanks from DB
sql_xlate_file $(TRIM_HOME)/lib/db2.fms -- SQL translate file
uppercase yes -- true if to uppercase idents
uppercase_sql yes -- true if to uppercase SQL stmts
sql_strip_comments yes -- true if to strip SQL comments
include_path ;.;$(TRIM_HOME)/lib
fnc_path ;.;$(TRIM_HOME)/lib
run_path ;.;$(TRIM_HOME)/run;$(TRIM_HOME)/dd;/usr2/bin
os_add_path :trifoc:niklas
rem
rem NOTE: first character in ‘include_path’ and ‘run_path’ is the path delimiter
rem
TRIMreport User Guide 146

DesignVision Users Guide

Appendix C

DV File Structure

A subset of the tree structures is independent of the type of application — for example,
all database access functions. The differences in the structures are mainly in supplied
functions; for example, report writing functions such as paginate are meaningless in
screen applications.

DesignVision and TRIMtools, its predecessor, uses an environment variable,
TRIM_HOME, to locate supplementary files. Within its default directory, DesignVision
creates four subdirectories — LIB, TERM, RUN, and BIN — that comprise the
development environment.

LIB Subdirectory
The LIB, or library, subdirectory, contains a number of files that store settings, including
yours, for application development.

Filename Contains

trim.cc/dv.cc Printer control code used by the pset()function in report designs
(.rep files). Each line in the file contains a symbol followed by a
quoted string of hexadecimal characters that represent an escape
code sequence.

trim.dft/dv.dft Various sections of code that is executed by default functions
including code for the Global window, user-defined windows, key
triggers, and update triggers.

trim.fnc/dv.fnc General-purpose subroutines that can be called by any design. Each
subroutine entry consists of a title line that has the subroutine
namewith an optional suffix, followed by the code in braces ({ }),
followed by the record separator.

trim.h/dv.h Symbol definitions for DVapp and DVreport designs as well as
stand-alone triggers. Symbols are defined, like C symbols, by
beginning a line with a #define followed by a symbol name and a
number or quoted string.

dv.img Used to preload graphics into DVslave’s graphic cache. Each line is
in the format:
<image name> <image file name>

<image name> is the name the image will have when referenced
within the application. <image file name> is the name of the file (on
the Windows machine) to be read into the internal image buffers.
DesignVision Users Guide 147

Appendix C DV File Structure LIB Subdirectory
trim.key/
dv.key

The labels that identify the key triggers in the DVapp form designer.
You can edit the labels to reflect different key mappings and check
the labels in DVapps’s designer DEFINE KEY dialog.

trim.uat/
dv.uat

User-defined attribute labels. Each line has a single label and the
label’s position (the line number) in the file indicated the bit to which
the user attribute corresponds. For example, if trim.uat contains
only CALCULATE, ROUNDUP, ROUNDDOWN these three user
attribute options on the DEFINE FIELD dialog. The built-in function
field_attr() returns a number that corresponds to the sum of
the value of each user attribute: The first user attribute is equal to 1,
the second to 2, the third to 4, the fourth to 8, and so on, based on
the result of 2 raised to the power of the position in the .uat file.

trim.msg/
dv.msg

The error messages for DesignVision. The file is not ascii and can not
be edited. It must be located in the TBU_HOME lib directory.

trim.csf OBSOLETE.

dv.ini Initialization values for operating characteristics of DesignVision.

Filename Contains
DesignVision Users Guide 148

DesignVision Users Guide

Appendix D

Migration Issues

Several issues influence the migration of a character-based
DVapp or TRIMapp application to a windows DVapp one.

Support Files
Character-based DVapp (TRIMapp) uses a set of support files usually located in the lib
directory located under the $TRIM_HOME directory. The files are all prefixed with trim.
and suffixed with the following file extentions:

TRIM Extensions Description

csf OBSOLETE.

dft Window default trigger code.

fnc TRImpl function library.

h TRImpl header file that contains defines.

ini TRIM initialization values.

key Names of key triggers.

msg Error and informational messages.

uat Names of user attributes.

vis Names of visual attributes.

The window version of DVapp uses the above files plus the following files. For the
window version, all files have the dv. prefix:

TRIM Extensions Description

kma Windows-to-TRIMapp key mapping.

men Default window menu.

pev Names of the predefined events.

The difficulty arises in integrating any modifications that you may have made to the
character-based files into the window-based files. This difficulty is most evident in the
dft file, which has default trigger entries for the pre-defined events. You can add the
modifications to the existing trim.dft either by using an editor (being careful to keep
the ASCII 30 record separator) or by using the car utility.

If you intend to migrate character-based applications to window-based ones, you must
modify the trigger code for pre-defined event 12, MDI. The default code shipped with
the kit references G.parent_aux, a variable defined in the new MAIN trigger in
DesignVision Users Guide 149

Appendix D Migration Issues Global Window
dv.dft but which did not exist in character-based trim.dft. Simply remove this
code line in trim.dft.

Just copy your existing trim.fnc to dv.fnc. The default dv.h file includes trim.h
and incorporates all necessary information.

Global Window
Because DVapp does not automatically create a global window, any of the functions you
copied from your old trim.fnc into dv.fnc that reference G.msg do not work. The
message line concept has been replaced by a status line and a message server with the
display_msg function in dv.fnc. Call this function when you want to write a
message to the ‘‘message" line. In addition, any references to G.fnn where nn is 1
through 10, do not work since these fields no longer exist.
DesignVision Users Guide 150

Index

DesignVision Users Guide

Index
Symbols
#define 53, 111
#else 53
#endif 53
#include 53, 133, 134
#undef 53
^^ 55

A
accelerator 136
action buttons 120
Action dialog 28
action name

associating trigger 114
actions

action definition 28
creating 28
defining 19
name 28
sharing 117

active area 85
alarms 131
all

trigger type 66
allocating

database cursors 131
logical cursors 135
shared segment 145

allocation 137
shared segment size 144

application 137
application groups

categorizing entries by 107
application server 137

setting values 133
application windows 19
applications

creating 8
database independent 61

arithmetic operations 74
arrays

declaring 64
multidimensional 69

arrow
graphic type 84

associating
action & trigger 114

attributes
field & user-defined 122
fixed field 25

auto_start 130
automatic conversions

datatypes 79
auto-operators function 54
autoskip

field attributes 26
auto-truncation 77

B
bezier

graphic type 84
bit shifting function 54

bitmap
graphic type 84

bitmaps 85
action definitions 28
specifying for buttons 120

bitwise operations 74
blanks

trimming 132, 142
block

heap size 134, 143
block.CURRENT 68
block.EOS 68
boolean operations 74
border

see no border
breakpoints

debugger 101, 103
buffer

database fetch 133
error messages 132
fetch 143

building
indexes 129

building applications 8
busy_alarm 131
buttons

describing 116
describing action 120
see also actions
specifying bitmaps 120
storing information 114

C
caching

database cursors 142
calling conventions 52

parm() 52
caret

concatenate 55
case

field attributes 26
setting 138
setting for SQL 138
specifying 145

catalog
masking differences 37

categorizing DVdd entries 107
century

issues with datetime 76
cgi_timeout 131
CHAR

trimming blanks from 142
char/string

datatype 71
direct assignment 77
long constants 77

checkboxes 121
describing 116
see also actions, objects

clearing fields 26
code executor 13
codes

creating 110

color
graphic_type dimension 83

columns 142
field names 124
maximum number 131
merging in list 89
modifying single 94
preserving in list 89
trim.ini keywords 131, 142

commands
debugger 103

compiling files 10
complex fields 33
concatenate 55
concatenation

char/string 77
conditional statements

IN predicate 56
connect

cursors 143
heap block 134
heap block size 143
specifying columns for 131,

142
constant statements

setting case 138
continue function 54
conversion

case 78
conversions

automatic datatype 79
converting

dynamic at runtime 55
files 10
languages 108
truncation during 77

converting datatypes 75
example 75
int 70
list 70
triggers 70

creating
actions 28
codes 110
domains 108
executable files 10
fields 23
help 112
lists 31, 86
text 30
trigger code 109
trigger sets 123

creating applications 8
creating lists 85

from control list 87
from directory 60
from file 87
from shared memory 87
from SQL SELECT 87
list_mod() 86
list_open() 86

current row
referencing 91
DesignVision Users Guide 151

Index
cursor movement 26
cursors

caching database 142
database cache 142
logical 135, 143

D
data body 81

see list datatype
Data Dictionary

introduction 19
see also DVdd
simple entity relationship

diagram 21
data dictionary

DVfast 8
restricting update 26
see also DVdd

database
caching cursors 142
defining indexes 121
errors 142
fetch buffer 133
fetch buffer size 143
field attributes 25
filename specification 58
number of cursors 142
specifying for

VORTEXaccelerator 144
database columns

defining 125
database connections

parameters 136
database cursors

allocating 131
database independence 61
databases

table descriptions 119
datatypes

automatic conversions 79
char/string 71
conversion 70
converting 75
datetime 72
glob 72
list 72
numeric 73
rowid 73
trigger 73

datetime 72
century issues 76
leap years 75
operations 75
storing & retrieving 76
valid dates 75

db_cursor_cache
trim.ini keyword 142

db_cursors
allocating 131
trim.ini keyword 142

db_message_size 132
trim.ini keyword 142

db_trim_blanks 132

trim.ini keywords 142
debugger

breakpoints 101, 103
commands 103
running 100
tag 101
traceback 101
watchpoints 101, 103

debugging
files 10
message_server 135

decimal separator string
setting 132

decimal_key 132
declaring variables 64
def 53
default

creating for DVdd 36
default values

defining for new records 116
defaults

for new records 116
define action 28
define field 23
Define Field dialog 33
defining

independent fields 126
window menus 9

defining lists 31
defining macros 53
deleting

orphan records 20
rows 94

describing
database tables 119

design files
converting 10

dialogs
Action 28
Define Field 33
Text 30
Window Definition 22

dictionary
reloading 36

diff
masking database 37

dir!
filename specifications 60

dir! specifier 58
directory

filename specification 58
host program 139
using with list_open 60

disp
field definition 24

display
filename specification 58

displaying
fields 26
lists 91

do … while function 54
documentation

automatic 37

creating 112
domains

creating 108
double caret

concatenate 55
dv.h 48, 50
DVapp

introduction 6
predefined window variables

68
DVdd

grouping entries 107
validating 36
version stamps 107

DVdd tables
saving 36

DVfast 8
DVmenu 9, 120
DVreport 68

introduction 7
trigger types 66

dynamic cursor count
setting 133

dynamic_cursors 133

E
edit

describing fields 118
ellipse

graphic type 83
env_vars 133
environment variables

see env_vars
errors

database message buffer 142
datetime 75
divide-by-zero 75
message buffer 132
syntax with variable

declarations 65
with nulls 75

event triggers 63
events

key 124
window 124

examples
changing predefined variables

68
char/string use 71
converting datatypes 75
converting numeric to

datetime 75
datetime use 72
dynamic trigger assignment 66
glob use 72
list use 72
numeric use 73
rowid use 73
string copy 77
trigger use 73

executable files
creating 10

execute() 73
DesignVision Users Guide 152

Index
executing SQL statements 15
execution flow

altering 51

F
fetch buffer size

setting 143
fetch_buffer_size 133

trim.ini keyword 143
field 68

fixed attributes 25
field attributes

autoskip 26
hidden 26
list 26
no border 27
no regen 26
no update 26
null 26
protected 26
query 26
raw input 26
reset 26
transparent 27
unique 26
upper case 26
user attributes 26

field masks
creating 111

field names
columns 124

field triggers 51
field_* functions 26
field_d 68
fields

attributes 122
clearing 26
complex 33
creating 23
Define Field dialog box 23
describing editable 118
displaying/hiding 26
multi-choice 33
single-choice 33

file
message 135
specifying for message 143

file specifiers
dir! 58
gui! 58
net! 58
vortex! 58

filename specification
databasey 58
directory 58
display 58
internet 58
local 58

filename specifications
dir! 60

file-name.KEY 92
filenames

specifying 58

files
.run 13
run 137
working with 58

flag_disable 50
flag_in 50
flag_out 50
flag_return 50
flag_tagged 50
flags 50

flag_disable 50
flag_in 50
flag_out 50
flag_return 50
flag_tagged 50
flg_active 50
flg_input 50
flg_modified 50
flg_output 50

flg_active 50
flg_input 50
flg_modified 50
flg_output 50
fonts

defining for screen items 119
logical screen information 113
specifying 26
text definition 30

foreign keys
checking 36
storing & checking 127

formats
storing report 115

forms 19
function declarations

required contents 52
functions 51

execute() 73
lists 72
unsupported 54

G
generating HTML 37
glob 72
global window

window trigger 55
goto function 54
graphic lists

format 82
type definitions 82

graphic_type 85
graphic_type_area 85
graphic_type_arrow 84
graphic_type_bezier 84
graphic_type_bitmap 84
graphic_type_ellipse 83
graphic_type_file 85
graphic_type_line 83
graphic_type_pie 84
graphic_type_poly 84
graphic_type_popup 85
graphic_type_rectangle 83
graphic_type_roundrect 84

graphic_type_text 84
graphics

 see also graphic lists
action definitions 28
lists 82
preloading 147

group id 111
Groups 57
groups

specifying for objects 121
gui! specifier 58

H
header files 50
heap_block_size 134

trim.ini keyword 143
help dialogs

creating 112
heterogeneous applications 61
hidden

field attributes 26
hiding fields 26
host program

working directory 139
hostname 134
HTML

generating 37
html_listload_hide 134
html_min_fld_width 134

I
identifers

specifying case 145
identifying files 58
IN predicate 56
include files

locating 143
include_path 133, 134

trim.ini keyword 143
independence

database 61
independent fields

defining 126
names 124

indexes
defining for database 121
storing columns 129

input
specifying raw 26

input function 131
inserting

rows 94
internet

filename/url specification 58
IP address

hostname 134
item_update 94

J
justification

text definition 30
justifying
DesignVision Users Guide 153

Index
text objects 30

K
key events 124
keywords

columns 131, 142
db_cursor_cache 142
db_cursors 142
db_message_size 142
db_trim_blanks 142
fetch_buffer_size 143
heap_block_size 143
include_path 143
logical_cursors 143
message_file 143
mux_default_db_id 144
run_path 144
shmem_seg_size 144
uppercase 145
uppercase_sql 145

L
language

changing 108
leap years

datetime 75
LIB

see library
LIKE predicate 56
line

graphic type 83
list

datatype 72
field attributes 26

list creation
query 86

List dialog
dialogs

List 31
list header 81
list objects

triggers 115
list of values
list of values (LOV) 34
list type

list attributes 31
list_close() 89
list_curr() 94
list_eos() 87
list_file() 88
list_find() 94
list_get() 94
list_ixed() 94
list_mod() 86
list_modcol() 94
list_more() 87, 88
list_open() 86, 87
list_pos() 91
list_read() 94
list_stat() 88
list_view

width 135

list_view() 93
list_view_max_width 135
lists

as variables 89
creating 31, 85, 86
declaring arrays 64
describing multi-choice 116
displaying 91
graphic 82
partial loading 87
reading data from 93
referencing 89
saving 88
see also objects
shared memory 87
single choice 116
status 88

loading
lists 87
partial tables 87

loading lists 86
see also creating lists

local
filename specification 58
variables 56

localization 108
locating include files 143
locating run files 144
logical_cursors 135

trim.ini keyword 143
LOV

see list of values 34

M
macros 53
mapping functions 15
masks

field definition 24
see also field masks 111

master
variables 57

menus
defining 9
definitions 120
storing information 114

merging columns
list save 89

message
database errors 142
error buffer 132

message_file 135
trim.ini keywords 143

message_server 135
migrating

TRIM to DVapp 29, 30
migrating apps 149
modifying

single column 94
monitoring

slaves 136
move_f2l() 94
multidimensional arays 69
mux_default_db_id 136

trim.ini keyword 144

N
pre-processor commands

 if 53
 if 53
name

action definition 28
field definition 24
list definition 31

names
storing of label, field, etc. 122

net! specifier 58
network

packet size 136
no border

field attributes 27
no regen

field attributes 26
no update

field attributes 26
null 68

char/string datatypes 77
field attributes 26
in operations 75
specifying/checking 26
variables 74

number operations 74
nulls 74

numeric datatype 73
numerical computation

datatypes for 74

O
object datatypes

specifying in domains 108
object states

flags 50
objects

relationship 48
specifying group 121
storing names 122

opening URL 60
operations

arithmetic 74
bitwise 74
boolean 74
char/string 77
glob 78
merging strings 77
supported types 74
with datetime 75
with nulls 75

OR clauses
equivalent 56

order
fields as created 24

ORDER BY
list of values 128

origin
action definition 22
origin
DesignVision Users Guide 154

Index
list definition 31
orphan records

locating 20
override

automatic start 130

P
packetsize 136
pages 19
parameters 136

referencing 56
parent-child

objects 48
path

include files 133, 134
run files 137

performance tuning
DVapp 104

pie chart
graphic type 84

placing lists 31
pointers

passing 73
popups 85
port 137
position

field navigation 24
post-validation

see validation
predefined block variables 68
predefined events

sharing 117
predicates

IN 56
LIKE 56

preincrement/decrement
function 54

pre-processor 48
pre-processor commands

#endif 53
#define 53
#else 53
#include 53
#undef 53

preserving columns
list save 89

pre-validation
see validation

profiler
DVapp 104

program 137
project

categorizing entries by 107
project id 111
protecting

field attributes 26

Q
query

creating lists 86
field attributes 26

query results
columns allowed 131

query() 87
quotes in a string 77

R
radio buttons

see also actions
raw input

field attributes 26
raw_input function 131
reading

from lists 93
read-only field

setting 26
records

defaults for new 116
defining defaluts 116

rectangle
graphic type 83

reloading dictionary 36
remapping

see also mapping
remote procedure calls 96
report blocks

modifying sequence 48
report field labels

managing 113
report field mask

creating 111
report fields

definitions 115
reset

field attributes 26
restricting data dictionary

update 26
return values 52
roundrect

graphic type 84
row

index in lists 89
referencing current 91

rowid
datatype 73

rows
deleting 94
inserting 94
updating 94

rpc 96
RR mask 76
run files

locating 144
run_path 137

qmr.ini keyword 144
running debugger 100
runtime 13

S
saving

DVdd tables 36
lists 88

screen labels

managing 113
screens

creating 111
defining text & font 119
field attributes 122
storing information 114

scrollable field
defining visible area 24

segments
allocating shared 137, 145

seq
field definition 24

sequence
modifying report blocks 48

server
message 135

SetCurTrg 102
setting

case 138
case for SQL 138

settings
fonts 26

shared
segment allocation 145

shared memory
lists 87

shared segment size
specifying 144

sharing
actions 117

shmem_seg_size 137, 145
trim.ini keyword 144

sibling
object 48

size
list definition 31

skipping
cursor movement 26

slaves
monitoring 136
specifying database for slaves

144
starting explicitly 130

specifying
fonts for text 30

specifying filenames 58
specifying input

raw 26
specifying text appearance 26
specifying window coordinates 8
specifying window dimensions 8
SQL

specifying case 145
stripping comments 137
translating dialects 138

SQL statements
constant translations 10
executing 15

sql_strip_comments 137, 144
sql_xlate() 61
sql_xlate_late 138
stack_size 138, 145
stand-alone files 10
DesignVision Users Guide 155

Index
standardizing
appearance 19

starting debugger 100
starting slaves 130
status

lists 88
strings

with quotes 77
structure checker 20, 36
subdirectories

LIB 147
symbolic text 78
synonyms 55
SYSDATE 68

T
tables

database descriptions 119
saving 36

tag
debugger 101

TDD
see console

TDD_ACTION 117
TDD_BUTTON 120
TDD_CATEGORY 107
TDD_CHOICE 116
TDD_CODE 110
TDD_COLUMN 125
TDD_DOMAIN 108
TDD_EDIT 118
TDD_EVENT 114
TDD_FIELD 124
TDD_FLAG 116
TDD_FORKEY 127
TDD_FORMAT 111
TDD_GROUP 33, 121
TDD_HELP 112
TDD_IFIELD 126
TDD_INDEX 121
TDD_LABEL 113
TDD_LANGUAGE 108
TDD_LIST 115
TDD_LOV 128
TDD_MENU 9, 120
TDD_PEVENT 124
TDD_RFIELD 115
TDD_SFIELD 33, 122
TDD_STEXT 119
TDD_TABLE 119
TDD_TEXT 114
TDD_TRIGGER 109
TDD_TRIGGERSET 123
TDD_XCOLUMN 129
templates

triggers 123
terminal manager 92
text

creating 30
defining screen items 119
graphic type 84
language displayed 108
specifying appearance 26

storing information 114
text definition 30

Text dialog 30
thin client 137

parameter 136
starting slaves 130

tokens
pasting 77

traceback
debugger 101

trailing blanks
trim 132

translating
SQL syntax 10

translating SQL
dynamic 61

transparent
field attributes 27
no border with 27

trap_intern_errors 138
trapping internal errors 138
trigger code

creating & storing 109
triggers 51

and variable names 65
associating action name 114
control flow 49
creating sets 123
datatype 73
DVapp types 65
DVreport types 66
event 63
fieldtriggers

user 51
in global window 55
pointer of 73
screen fields 115
stand-alone types 66
synonyms in 55
variable 73
variable definitions 66
variables 51

trim.h 48, 50
TRIM_HOME 143
TRIMapp

migrating from 29, 30
TRIMgen 10

options 10
TRIMlib 11
TRIMlis 11
TRIMlsr 11
TRIMmap 11
trimming

trailing blanks 132
TRIMmir 12
TRIMpl

introduction 7
TRIMrpc 96
TRIMrun 13
TRIMsrt 14
truncation

automatic 77
tuning performance 104

type definitions 82

U
unique

field attributes 26
unsupported functions 54
UPDATE

restricting 26
updating

rows 94
uppercase 138

trim.ini keyword 145
uppercase_sql 138

trim.ini keyword 145
URL

opening for read 60
url specifier

net! 58
user

trigger type 66
triggers 51

user attributes
field attributes 26

user-defined
field attributes 122

USERTRIG 51
using macros 53

V
V4

migrating from 29, 30
validating DVdd 36
validation

marking 114
values, lists of see LOV
variable array declarations 69
variable names

syntax 64
variables

and triggers 65
declaring 64
designer field 69
lists 72
local 138, 145
names in triggers 65
predefined 50
scope 64
sending to application server

133
user 50
valid names 64
value preserved 64
window 68

verifying relationships 20
version stamps 107
versions

deleting old DVdd 36
vortex! specifier 58
VORTEXaccelerator 136

specifying database 144
VORTEXsql 15, 36
vtxnet 137
DesignVision Users Guide 156

Index
W
watchpoints

debugger 101, 103
WHERE

list of values 128
width

graphic_type dimension 83
wildcards

LIKE 56
window

menu definitions 9
specifying size, place 8

Window Definition
dialog 22

window events 124
WINDOW_DEFAULT_FILE 26
window_name.WL 26
window-name variables 68
window-name.AF 68
window-name.AR 68
window-name.WL 68
windows

global window trigger 55
working_directory 139

X
xaml_cell_height 139
xaml_cell_width 139
xaml_fld_add_width 139
xaml_fld_max_margin 140
xaml_fld_min_width 140
xaml_font_n 140
DesignVision Users Guide 157

	Preface
	Organization
	Revisions

	DesignVision Overview
	Designing Applications - DVapp
	Writing Reports - TRIMreport
	TRIMpl
	Final Components
	DVfast
	DVmenu
	TRIMgen
	TRIMlib
	TRIMlis
	TRIMlsr
	TRIMmap
	TRIMmir
	TRIMrun
	TRIMsrt
	VORTEXsql

	Installing DesignVision
	DesignVision for OpenVMS
	DesignVision for Unix

	Application Development
	Designing Your Application
	Data Dictionary
	Data Dictionary Relationships

	Using DVapp
	Window Definition
	Window Elements
	Field
	Action
	Text
	List

	Specifying Complex Fields
	Using the Define Field dialog

	Creating Forms
	Navigation
	Non-Query Function Keys
	Query Function Keys

	Basic Console Activities
	Save Tables
	Refresh or Reload
	Validate the Data Dictionary
	Delete Versions
	Create Default Entries
	Mask Database Catalog Differences
	Create Header Files
	Automatic Documentation

	Creating and Managing Database Tables
	Storing and Retrieving Field Definitions

	Writing in TRIMpl
	Object Relationships
	Execution Flow
	Changing Objects’ Status
	Variables
	Inline

	Triggers and Functions
	User-Defined Functions and Triggers
	Field Triggers
	Validation Triggers
	Calling Conventions and Return Values

	TRIMpl Language Syntax
	Naming Conventions
	Syntax Extensions
	Filename Specifications
	Local
	Display
	Database
	Internet
	Directory

	SQL Syntax Translation

	Variables and Triggers
	Trigger Types
	Windows Event Triggers

	Variable Names
	Scope
	DVapp Trigger Types
	DVreport Trigger Types
	Stand-Alone Trigger Types

	Trigger Operations
	Examples

	Predefined Variables
	DVapp Predefined Window Variables
	TRIMreport Predefined Block Variables
	Miscellaneous Predefined Variables/Symbols

	Variable Array Declarations
	Designer Field Variables
	Conversion

	Datatypes
	char/string
	datetime
	glob
	int
	list
	numeric
	rowid
	trigger
	Number Operations
	Arithmetic
	Bitwise
	Boolean
	Operations Involving Nulls
	Datetime Operations
	Valid Dates
	Datetime Manipulation
	Storing and Retrieving Datetime Data

	char/string Operations
	NULLs
	Auto-Truncation
	Token Pasting
	Symbolic Text

	Glob Operations
	Datatype Conversions

	Working with Lists
	List Components
	Graphic Lists
	Type Definitions

	Creating Lists
	Query()
	list_mod()
	list_open()

	Partial List Loading
	Status Information for a List Row
	Saving a List
	List Reference
	Getting Information on Lists
	Navigating Through Lists
	Example

	Displaying (Viewing) Lists
	Terminal Manager
	Rules for list_view()

	Choosing the Correct list_view
	Reading Data from a List
	Deleting, Inserting, and Updating Rows
	list_mod()
	list_modcol()
	move_f2l()

	Summary

	Using TRIMrpc
	Creating the TRIMpl Application
	How TRIMrpc Works
	Client Functions
	Parameters

	Error Handling
	Example

	Debugging & Compiling
	Using Debugger from DVapp
	Running Character Version
	Command Syntax

	TRIMreport and Stand-Alone Applications
	DVapp Performance Tuning
	Using the Profiler
	Profiler Script

	Data Dictionary
	TDD_CATEGORY
	TDD_DOMAIN
	TDD_LANGUAGE
	TDD_TRIGGER
	TDD_CODE
	TDD_FORMAT
	TDD_HELP
	TDD_LABEL
	TDD_TEXT
	TDD_EVENT
	TDD_LIST
	TDD_RFIELD
	TDD_CHOICE
	TDD_FLAG
	TDD_ACTION
	TDD_EDIT
	TDD_TABLE
	TDD_STEXT
	TDD_MENU
	TDD_BUTTON
	TDD_GROUP
	TDD_INDEX
	TDD_SFIELD
	TDD_TRIGGERSET
	TDD_PEVENT
	TDD_FIELD
	TDD_COLUMN
	TDD_IFIELD
	TDD_FORKEY
	TDD_LOV
	TDD_XCOLUMN

	Intialization Files
	dv.ini
	trim.ini

	DV File Structure
	LIB Subdirectory

	Migration Issues
	Support Files
	Global Window

	Index

